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Abstract

Does y obtain under the counterfactual supposition that x? The answer to this question is

famously thought to depend on whether y obtains in the most similar world(s) in which x obtains.

What this notion of ‘similarity’ consists in is controversial, but in recent years, graphical causal

models have proved incredibly useful in getting a handle on considerations of similarity between

worlds. One limitation of the resulting conception of similarity is that it says nothing about what

would obtain were the causal structure to be different from what it actually is, or from what we

believe it to be. In this paper, we explore the possibility of using graphical causal models to resolve

counterfactual queries about causal structure by introducing a notion of similarity between causal

graphs. Since there are multiple principled senses in which a graph G∗ can be more similar to a

graph G than a graph G∗∗, we introduce multiple similarity metrics, as well as multiple ways to

prioritize the various metrics when settling counterfactual queries about causal structure.

1 Introduction

Suppose that you had your temperature taken, and that the thermometer correctly indicated a

healthy temperature of 37◦C (or 98.6◦F). What would have happened had the thermometer been

broken so that its reading was exactly .5◦C higher? Would your body temperature have been

different than it actually was? Would you have subsequently taken a pill to reduce your fever?

Inspired by Lewis (1973) and Stalnaker (1968), most philosophers think that the answers to

these questions can be determined by checking whether the closest possible world(s) in which the

thermometer is broken is/are worlds in which your body temperature is different, or is/are worlds

in which you take the pill. What does this closeness consist in? Most philosophers treat worlds

as close to the actual world to the extent that they are similar to the actual world, where what

counts as similar varies with context. Although the question of what settles the degree of similarity

between possible worlds remains controversial, it is standardly thought that the similarity relation

must capture the way in which counterfactual dependence typically tracks causal dependence. For

example, given our knowledge of the way in which thermometers work, and of how people respond

when thermometers register slight fevers, the relevant notion of similarity should vindicate the claim

that the closest possible worlds in which the thermometer is broken may be worlds in which you

subsequently take a pill (since the thermometer’s appearance has a causal effect on whether you
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take the pill), but may not be worlds in which your body temperature is different than it actually

is (since your body temperature is causally upstream from the thermometer’s appearance).

Lewis (1979) famously used a complicated system of weights and priorities to develop an account

of ‘similarity’ that delivers these results, but many philosophers—e.g., Hausman (1998) and Wood-

ward (2005)—have convincingly argued that Lewis’s account is inadequate for several reasons, chief

among which is its inability to rigorously establish definite similarity orderings.1 Meanwhile, some

other authors—e.g., Briggs (2012), Halpern (2016), Pearl (2009), and Woodward (2005)—have ar-

gued that graphical causal models can be used to develop a more precise account that does at least

as well at capturing our intuitions about counterfactual dependence. We agree with these authors.

Though the details of these accounts vary from one author to the next, we are impressed with their

general ability to capture counterfactual reasoning in a rigorous way.

There is, however, at least one important limitation to these authors’ accounts. They say nothing

about what would obtain were the causal structure to be different from what it actually is, or from

what we believe it to be. The basic issue is that a graphical causal model specifies how the worlds

that the causal model describes are more and less similar to each other, but it says nothing about

how the causal model itself is more or less similar to other causal models. Thus these accounts are

silent, e.g., with respect to how we should update our beliefs under the counterfactual supposition

that your body temperature causally depends on the thermometer’s appearance (rather than the

other way around). Should we still believe that whether you take a pill is causally downstream from

your body temperature? If you want an answer to this question, then you must look elsewhere.

In this paper, we explore the possibility of using graphical causal models to resolve counter-

factual queries about causal structure by introducing a notion of similarity between causal graphs.

Specifically, we aim to answer queries like the above by determining whether the counterfactual

graph that is most similar to the original graph is one in which taking a pill is causally downstream

from your body temperature. Since the causal structure of the world may be immutable, and since

we seldom, if ever, are in a position to manipulate the causal structure of the world, it may seem that

this project is valuable only insofar as it informs science fiction, or insofar as it quenches our natural

thirst for knowledge about how things would be different were the world to be causally different.

(After all, the primary reason that we value knowing what would happen were the thermometer

to report inaccurately is that thermometers sometimes do break, and we care about the very real

consequences of their breaking.) We must admit that some of our interest in these counterfactual

queries is driven by pure curiosity, but the more pragmatic members of our audience needn’t worry.

We are also driven by our desire to make progress on the practically important problem of how

agents should update their standing beliefs about causal structure when they learn that they are

incorrect.

It is clear from work at the intersection of psychology, epistemology, and artificial intelligence

that intelligent creatures like us often use qualitative beliefs about causal structure to organize

our quantitative beliefs about evidential and counterfactual (ir)relevance.2 When our beliefs about

1The ambiguity of Lewis’s (1979) account is in part due to his desire to develop an account of similarity that doesn’t

make any reference to causation (in the hope of reducing causal dependence to counterfactual dependence). Like, e.g.,

Halpern (2016), Pearl (2009) and Woodward (2005), we have no ambition to reduce causal dependence to counterfactual

dependence.
2For recent empirical work explicating the role that qualitative beliefs about causal structure play in guiding evidential
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causal structure play this role, we do not entertain alternate possible causal structures; rather, we

take a particular causal structure as given, and let it guide our evidential and practical reasoning.

In so doing, we open ourselves up to the possibility of learning something that conflicts with our

standing qualitative beliefs—e.g., when we initially believe that X causes Y and subsequently learn

that Y temporally precedes X—and we need a method of belief revision that is well-suited to this

kind of learning. In this setting, we submit that the agent should replace her belief in the original

causal graph with a belief in a new causal graph that is among the graphs most similar to the

original that are compatible with the new evidence.

Consider our attitudes towards the healthiness of foods. In order to make the world easier to

navigate, we often reason as though we’re certain that a particular food does (or does not) causally

promote heart disease. (This considerably simplifies our deliberation about whether to eat the

relevant food.) But when we learn later that we’re wrong (e.g., because our best science now tells

us that red meat consumption does causally promote heart disease), we need to know what causal

structure to accept. Our proposal is that we should accept whatever graph is closest to our prior

causal graph among the set of graphs that include the learned causal relationship between red meat

consumption and heart disease.

In order to develop a treatment of similarity that is up to the task at hand, we need to think

carefully about what information is contained within a causal graph. We will see in what follows

that causal graphs are used to represent how an agent’s beliefs about causal structure constrain

her beliefs about evidential relevance and counterfactual relevance, and that these two kinds of

constraints operate somewhat independently from each other. In order to ensure that our treatment

of similarity incorporates both considerations, we introduce an evidential similarity relation in

Section 2, a counterfactual similarity relation in Section 3, and then consider possible ways of

incorporating both kinds of similarity into one master concept in Section 4. We abstain from arguing

for any particular master concept of similarity because it seems that there may be some contexts

in which one master concept is appropriately deployed, and others where another is appropriately

deployed. But in Section 5, we do take stock of when it matters which concept we use—i.e., of when

(and when not) counterfactual queries about causal structure have the same answers regardless of

which potential master concept is deployed. We argue that the answers to these counterfactual

queries may stand on firmer ground than others because, unlike others, they do not depend on

whether we give more priority to evidential similarity or counterfactual similarity.

2 Evidential Similarity

In order to say what accounts for the similarity between causal graphs, we need to first take stock

of what information is contained within a causal graph. Our first task is thus to identify the basic

properties that distinguish causal structures.

Given some set of variables, V, we define a causal structure over V as a directed acyclic graph

(DAG) over V—i.e., a set of directed edges (or arrows) over V that are arranged such that no

directed path forms a cycle, and where the directed edges are taken to represent direct causal

dependencies. For example, if H represents height, D represents diet, and I represents intelligence,

and counterfactual reasoning, see e.g. Ali, Chater and Oaksford (2011), Lagnado and Sloman (2002).
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then the following DAG represents the causal structure according to which diet has a direct causal

influence on intelligence, and no other (direct or indirect) causal relationships obtain between the

variables in V.

H D I

One way of capturing the characteristic content of this particular causal structure is that it has

substantial implications for the evidential relationships between H, D, and I. For example, if this

really is the true causal structure (and if we haven’t omitted any common causes), then H and D

should be probabilistically independent. This is because there should be no correlation between the

respective values of two variables when there is absolutely no causal relationship between them.

The most powerful and widely accepted way of cataloging the evidential implications of a causal

structure is given by the Causal Markov Condition (CMC), a generalization of Reichenbach’s com-

mon cause principle. The CMC provides a general procedure for inferring probabilistic indepen-

dencies (such as the independence between height and diet) from DAGs, and also helps us narrow

down the set of DAGs that are compatible with a given probability distribution.3

One important aspect of the CMC is that it sometimes treats distinct DAGs as compatible with

the same probability distributions. To illustrate, consider the following causal structures, G and

G∗.

H D I H D I

According to the CMC, G and G∗ both imply that H is probabilistically independent of both

D and I, and allow for the possibility that D is correlated with I. But according to the CMC,

the direction of the causal dependence between D and I makes no difference with respect to the

probability distribution. Structures like G and G∗—i.e., structures that imply the same probabilistic

independencies—are known as Markov equivalent.

If we hope to explicate the notion of similarity between causal structures in a way that tracks

their role in evidential reasoning, it seems that there should be some dimension of similarity ac-

cording to which two Markov equivalent structures are always classified as maximally similar. More

generally, a natural approach to assessing the similarity between distinct causal structures is to

measure the extent to which they have the same implications regarding the evidential relationships

that obtain among the given variables. This motivates the following definition,

Definition 2.1 Fix a variable set V and let NP denote the cardinality of the set of all possible

conditional independencies that can hold among the variables in V. Given a causal structure G, let

PG denote the set of conditional independencies entailed by G and the CMC. Then we define the

‘evidential distance’ between two causal structures G and G∗ over V to be dE(G,G∗) = |PG|∆|PG∗ |
NP

,

where ∆ is the symmetric difference.

3Note that additional axioms are also commonly employed towards these ends, most notably the causal minimality and

causal faithfulness conditions (see Sprites et al., 2000).
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dE(G,G∗), or the evidential distance between G and G∗, simply counts the number of conditional

independencies that are entailed by one but not both of G and G∗, normalized by the total number

of possible conditional independencies that could hold between the variables in V.4

Intuitively, dE(G,G∗) can be thought of as encoding the extent to which G and G∗ disagree

regarding the evidential relationships between the variables in V. For example, it will be zero if and

only if G and G∗ are Markov equivalent. To further illustrate, consider the basic structures

G1 : X → Y → Z, G2 : X ← Y → Z, G3 : X → Y ← Z

To calculate the evidential distance between them, we simply count how many probabilistic

conditional independencies they disagree on and divide by the total number of possible conditional

independencies, as below.5

G1 G2 G3

X⊥Y × × ×
X⊥Z × × X

Y⊥Z × × ×
X⊥Y |Z × × ×
X⊥Z|Y X X ×
Y⊥Z|X × × ×

This yields the result that dE(G1, G2) = 0 (as expected, since G1 and G2 are Markov equivalent)

and dE(G1, G3) = 1
3 = dE(G2, G3) since both G1 and G2 disagree with G3 about two of the six

possible independencies.

3 Counterfactual Similarity

Of course, the characteristic content of a causal structure is not exhausted by its evidential impli-

cations. It is widely acknowledged that causal structure also plays a crucial role both in assessing

the veracity of counterfactuals and in predicting the outcomes of prospective interventions. To

illustrate, let BT represent body temperature, TF represent whether the thermometer properly

functions, TR represent the thermometer reading, and PC represent whether a fever-reducing pill

is subsequently consumed. The intuitive causal structure in this case is as below.

4One might be worried that the proposed definition of the evidential measure involves double counting, since it is always

possible to generate the implied probabilistic independencies by considering a subset of independencies that imply the full

set via the semi-graphoid axioms for conditional independence. For example, one might consider using only the ‘basic

independencies’ discussed by Forster, Raskutti, Stern and Weinberger (2017). Though this approach will work when one

is measuring the similarity between a DAG and one of its subgraphs, it will not work generally. This is because a DAG

will generally have multiple different sets of basic independencies, and which set one chooses sometimes makes a difference

to the value of dE . Thus, when evaluating dE we generally need to consider the full set of probabilistic independencies

entailed by the graph, although we do make the harmless simplification of ignoring symmetrized independencies (i.e., we

count only one of X ⊥ Y |Z and Y ⊥ X|Z.)
5Given X,Y, Z ∈ V, we write X⊥Y |Z to indicate that X is probabilistically independent of Y conditional on Z. X⊥Y

means that X and Y are unconditionally independent.
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BT

TR

TF

PC

As we mentioned in the introduction, this DAG gives us a good handle on what counterfactually

depends on what in most contexts. For example, we know that both TR and PC counterfactually

depend on BT , but that TF does not counterfactually depend on BT . Similarly, as mentioned

before, we know that BT and TF do not counterfactually depend on TR, and PC plausibly does

counterfactually depend on TR.

In the interventionist framework there are two simple ways to account for these dependencies.

First, the CMC entails that the intervention on X can be associated only with variables that are

causally downstream from X, and counterfactual supposition plausibly corresponds to the suppo-

sition that one intervenes to set X to x.6 Second, we can think of a DAG as imposing a partial

counterfactual ordering on V, where Y comes directly after X in the ordering exactly when X is a

direct cause of Y , and where Y possibly counterfactually depends on X exactly when Y (directly

or indirectly) follows X in the partial ordering.7 Thus this graph imposes a counterfactual ordering

according to which BT and TF directly precede TR, BT and TF are not ordered, and PC directly

follows TR and indirectly follows both BT and TF .

We see now that DAGs not only have implications with respect to the evidential relationships

that obtain between the variables in V, but also imply constraints on the possible counterfactual

dependencies that hold between those variables. Just as two distinct DAGs can embody the same

evidential implications (e.g., when they are Markov equivalent), two distinct DAGs can embody

the same implications regarding the counterfactual dependencies that obtain between the given

variables. To illustrate, consider the following two causal structures.

BT

TR

TF

PC

BT

TR

TF

PC

Call the structure on the left G and the structure on the right G∗. G∗ is identical to G except

for the fact that it includes an additional direct causal influence from BT to PC. This additional

6When we intervene to set X to x, we use some exogenous cause of X to set the value of X to x. For a full understanding

of interventions, see Pearl (2009) or Spirtes et al. (2000).
7We restrict ourselves to talking about possible counterfactual dependence because in cases where the causal faithfulness

condition fails, Y can follow X in the ordering without being sensitive to interventions on X.
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causal relationship does not entail any new counterfactual dependencies, since PC already indirectly

follows BT in the counterfactual ordering implied by G. Thus, G and G∗ encode exactly the same

sets of possible counterfactual dependencies, and we can call them counterfactually equivalent.8

In section 2 we presented a method for evaluating the degree to which different causal structures

G and G∗ have the same evidential implications. An analogous method can be defined for evalu-

ating the degree to which G and G∗ are counterfactually similar. Just as we required that, from

the evidential perspective, Markov equivalent DAGs should be maximally similar, we require that

counterfactually equivalent DAGs should be maximally similar from the counterfactual perspective.

Definition 3.1 Fix a variable set V and let NC denote the cardinality of the set of all possible

counterfactual dependencies that can hold among the variables in V. Given a causal structure G, let

CG denote the set of possible counterfactual dependencies allowed by G and the CMC. Then we define

the ‘counterfactual distance’ between two causal structures G and G∗ over V to be dC(G,G∗) =
|CG|∆|CG∗ |

NC
.

Given two causal structures G and G∗ over a variable set V, dC(G,G∗) simply counts all those

possible counterfactual dependencies about which G and G∗ disagree and normalizes by the car-

dinality of the set of possible counterfactual dependencies among V. It immediately follows that

dC(G,G∗) = 0 if and only if G and G∗ are counterfactually equivalent. To illustrate how dC mea-

sures the distance between causal structures and its relationship to dE , recall the basic structures

G1, G2, G3 from the previous section. The following table shows how we calculate the counterfactual

distance between these structures (where X < Y means that Y possibly counterfactually depends

on X).

G1 G2 G3

X < Y X × X

Y < X × X ×
X < Z X × ×
Z < X × × ×
Y < Z X X ×
Z < Y × × X

The evidential and counterfactual distances between these structures is summarized as follows.

dE(−,−) dC(−,−)

G1, G2 0 1/2

G1, G3 1/3 1/2

G2, G3 1/3 2/3

This table helps us to see how evidential distance and counterfactual distance can come apart.

For example, G2 and G3 are equally counterfactually close to G1, but when it comes to evidential

distance, G2 is closer to G1 than G3 is close to G1. Because these two metrics are independent in this

way, if we settle counterfactual queries by minimizing evidential distance, we will not always arrive

8It is easy to see that two DAGs can be counterfactually equivalent only if one is a subgraph of the other.
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at the DAG (or set of DAGs) that minimizes counterfactual distance. Likewise, if we minimize

counterfactual distance, we will not always arrive at the DAG (or set of DAGs) that minimizes

evidential distance. For example, if we start off believing X → Y → Z and then learn that, as a

matter of fact, Y → X, it’s easy to see that the evidentially closest DAG is X ← Y → Z (since it’s

Markov equivalent to the original). But it’s also easy to see that Y → X → Z is counterfactually

closer to the original graph than X ← Y → Z. This is because Y → X → Z permits Z to

counterfactually depend on X (as it did in the original graph) while X ← Y → Z does not.

This means that if we want to develop a notion of similarity that incorporates both kinds of

similarity, we need some way of integrating both kinds of consideration into one and the same

distance metric. In the next section, we introduce different ways of doing exactly this.

4 One Similarity to Rule Them All?

We are now ready to ask how evidential similarity and counterfactual similarity can be integrated

into some procedure for settling counterfactual queries—i.e., that provides a semantics for counter-

factuals whose antecedents specify counterfactual facts about causal structure, and that provides

agents with instruction who need to revise their qualitative beliefs about causal structure on the

basis of new conflicting evidence. This means constructing a procedures that identifies which DAGs

that satisfy some constraint (supplied by either the new evidence or the counterfactual antecedent)

are most similar to the original DAG. If we let G represent the original graph and let S represent

the set of the DAGs that are compatible with the new (counterfactual or evidential) constraint,

then the following three procedures are natural candidates.

1: First, find the set SE ⊆ S of structures in S that are evidentially closest to G, i.e. SE = {G′ ∈
S|dE(G,G′) = min

G′′∈S
dE(G,G′′)}. Next, find the set SEC ⊆ SE of structures in SE that are

counterfactually closest to G, i.e. SEC = {G′ ∈ SE |dC(G,G′) = min
G′′∈SE

dC(G,G′′)}. Return

SEC as the set of structures in S that are most similar to G.

2: First, find the set SC ⊆ S of structures in S that are counterfactually closest to G, i.e.

SC = {G′ ∈ S|dC(G,G′) = min
G′′∈S

dC(G,G′′)}. Next, find the set SCE ⊆ SC of structures in

SC that are evidentially closest to G, i.e. SCE = {G′ ∈ SC |dE(G,G′) = min
G′′∈SC

dE(G,G′′)}.
Return SCE as the set of structures in S that are most similar to G.

3: Define the measure dα as a weighted average of dE and dC , i.e. dα(G,G′) = (αE ·dE(G,G′))+

(αC · dC(G,G′)). Return the set Sα ⊆ S that minimizes this distance as the set of structures

in S that are most similar to G.

Informally, the procedures can be summarized as follows. The first two procedures are lexico-

graphic. They privilege either the evidential or the counterfactual content of causal structures as

more fundamental. According to the first procedure, one should first identify those structures whose

evidential implications are closest to G’s, and then break any ties by going with the structure(s)

that is/are counterfactually closest. The second procedure is the exact inverse—i.e., it isolates the

set of structures which are most similar to G from the counterfactual perspective and then breaks

ties by identifying which elements of that set are evidentially closest to G. While the first and sec-

ond procedures regard the evidential and counterfactual implications of a causal structure as more
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fundamental, respectively, the third procedure allows agents to weigh counterfactual and evidential

considerations against one another in a more nuanced way—i.e., by taking the similarity between

two structures to be a weighted average of their evidential and counterfactual similarity.

The relationship between these procedures and the resolution of counterfactual queries is not

entirely clear. For example, one can develop the counterfactual semantics such that a given causal-

structure-counterfactual is true relative to the standards imposed by a particular procedure only

when the structural feature of its consequent is shared by all of the graphs returned by the procedure,

or, alternatively, only when the structural feature of its consequent is shared by some graph returned

by the procedure. Similarly, one can develop the norm of belief revision such that it is rationally

permissible to accept any of the graphs returned by the relevant procedure, or such that it is

rationally permissible to accept no particular graph when multiple graphs are returned. In this

paper, we do not intend to settle questions of this sort, and instead primarily focus on questions

about the similarity notion itself.

Upon putting these procedures on the table, it is immediately clear that what constitutes the

closest graph in which some constraint is satisfied will depend on which procedure is used, and on

how the weights are set when using the weighted procedure. Just consider our earlier example,

where an agent initially accepts X → Y → Z and then learns that Y → Z. If the standards are

set by the first procedure, the agent should come to accept that X ← Y → Z. This is because it’s

Markov equivalent to the original graph and satisfies the constraint, therefore leaving no ties to be

broken. On the other hand, if the standards are set by the second procedure, it can be shown that

there are multiple DAGs that are strictly counterfactually closer than this one—e.g., Y → X → Z—

and the evidential tie-breaker therefore cannot provide reason to favor X ← Y → Z. Similarly,

if considerably more weight is given to evidential similarity than counterfactual similarity, then it

will be rational to accept X ← Y → Z, but if considerably more weight is given to counterfactual

similarity, then it will be rational to accept some other graph.

Since there may be some contexts where it is reasonable to prioritize evidential similarity (e.g.,

when beliefs about causal structure function primarily to constrain an agent’s evidential probabilistic

judgments) and other contexts where it is reasonable to prioritize counterfactual similarity (e.g.,

when beliefs about causal structure function primarily to impose order on things), the truth-values

of causal-structure-counterfactuals, as well as rational belief updates about causal structure, may

depend on the context at hand.9 Does this mean that there is no objective fact of the matter about

how the causal structure would be were some local feature of it different from what it actually is?

5 Whither Objectivity?

Even if each of the procedures from the last section is sometimes admissible, there may be an

objective answer to how any counterfactual query should be answered in a given context. In order

to establish this answer, we just determine which procedure should be used in the context at hand,

and then the objective fact of the matter is settled by this procedure. But still, it may be surprising

that the solutions to counterfactual queries about causal structure appear to depend on what we

9We are officially silent with respect to whether the solutions to counterfactual queries vary with context. Indeed, one

of us is sympathetic to the claim that counterfactual similarity should receive priority in every context.
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value—i.e., whether we prioritize evidential similarity or counterfactual similarity—in a way that

“normal” counterfactual queries (or queries about the values of variables) do not.

In this section, we consider whether there are any specific types of counterfactual queries about

causal structure where the same results are returned no matter which procedure is used. When this

happens, just as with “normal” counterfactual queries, there is a context-invariant objective fact

of the matter about which causal-structure-counterfactuals are true, and about how agents should

revise their qualitative beliefs about causal structure.

We focus primarily on when the two lexicographic procedures agree because it can be easily

shown that the lexicographic procedures agree exactly when it doesn’t matter what non-extreme

weights are used in the weighted procedure.10 Thus we can check whether context plays a role just

by checking whether it matters which of the two lexicographic procedures is used. It is beyond the

scope of this paper to prove general results about when the lexicographic procedures agree, but we

identify three examples where they do agree that are interesting in their own right, and that may

themselves be suggestive about what can be proved in the future.

Case 1 (Collider Conflict): Let G1 be the basic collider structure

X

Y

Z

and suppose that we want to find the most similar causal structure in which Y has a direct

causal influence on Z (rather than vice-versa). According to either of our lexicographic pro-

cedures, the following structure is uniquely most similar to G1 amongst the set of DAG’s that

satisfy the given constraint.

X Y Z

Case 2 (Adding an Arrow): Let G1 be the structure

X Y Z

and suppose that we want to find the most similar causal structure in which Y has a direct

causal influence on Z (rather than there being no causal relationship between them). Both

lexicographic procedures agree on a single closest structure amongst all those that satisfy the

given constraint. Specifically, they both return the chain structure

X Y Z

10This is true because the lexicographic procedures return the same structures exactly when the intersection of eviden-

tially and counterfactually closest structures is non-empty, and any structure that minimizes both the counterfactual and

evidential distances will also minimize any weighted average of those distances.
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Case 3 (Disconnecting Two Variables): Let G1 be the chain structure

X Y Z

and suppose that we want to find the most similar causal structure in which Y and Z are

completely causally independent of one-another in the sense that neither causally influences

the other, and they have no common causes or effects. Both lexicographic procedures agree

on a single closest structure amongst all those that satisfy the given constraint:

X Y Z

The fact that these three cases exist shows that there is a noteworthy class of cases for which

it does not matter how we prioritize considerations of evidential and counterfactual similarity. In

these cases, we can say that there is an objective fact of the matter about what would happen were

the causal structure to be different in a sense that does not exist generally—namely, no matter

how considerations of evidential similarity and counterfactual similarity are prioritized, the most

similar graph(s) is/are the same. Whether there are actually contexts in which each of these

procedures should be used goes beyond the scope of this paper, so it is still possible to argue that

the resolution of every causal-structure-counterfactual does not vary with context (by arguing for

one of the lexicographical procedures). But since some practically minded individuals might think

there are some contexts that call for one prioritization, and others that call for another, we believe

that it is worth pointing out that there are some causal-structure-counterfactual queries that have

the same resolution no matter how things are prioritized.

6 Conclusion

We have explicated two ways in which causal structures can be similar, and three ways in which

these two notions of similarity can be integrated into a single master conception of similarity. We

do not defend any of these master concepts as universally correct, but we have shown that there is

a substantial range of cases in which they coincide. In future work we hope to explore

1: When and whether there is principled reason to favor one master conception (or one system

of weights) over the alternatives.

2: When and whether any of these potential master conceptions can be used to assess the accuracy

of causal search algorithms in terms of similarity to the true causal structure.11

3: Whether any of these potential master conceptions can be used to define a procedure for

aggregating competing beliefs about causal structure in terms of finding the graph(s) that is

on average most similar to the individually accepted graphs (see e.g. Bradley, Dietrich and

List (2014)).

11The so called ‘graph-edit distance’ is sometimes used for exactly this purpose, but it is now widely recognized that a

different conception of similarity to the true causal structure is needed (see, e.g., Garant and Jensen (2016)).
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