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Algorithmic	Fairness	and	Base	Rate	Tracking	

Abstract	
In	the	last	few	years,	machine	learning	researchers	have	proposed	a	plethora	of	

prospective	 ‘statistical	 criteria	 of	 algorithmic	 fairness’,	 i.e.	 purely	 statistical	

necessary	conditions	that	a	predictive	algorithm’s	predictions	must	satisfy	in	order	

for	the	algorithm	to	count	as	fair.	However,	a	mixture	of	formal	no-go	theorems	and	

devastating	counterexamples	have	served	to	undermine	the	philosophical	credibility	

of	almost	all	of	these	conditions.	Only	one	statistical	criterion	retains	anything	like	

universal	 support,	namely	calibration	within	groups.	 In	 this	paper,	 I	 (i)	argue	 that	

calibration	 within	 groups	 is	 neither	 a	 necessary	 nor	 a	 sufficient	 condition	 for	

algorithmic	fairness,	(ii)	propose,	motivate	and	defend	a	novel	criterion,	called	‘base	

rate	 tracking’,	which	 evades	 the	 theorems	and	 counterexamples	 that	 undermined	

existing	 criteria	 and	 allows	 us	 to	 accurately	 diagnose	 and	 quantify	 many	

paradigmatic	instances	of	algorithmic	unfairness,	and	(iii)	reevaluate	the	proper	role	

of	statistical	criteria	of	algorithmic	 fairness	 in	 the	project	of	ensuring	 the	 fair	and	

equitable	application	of	predictive	algorithms	in	society.	

1 Introduction	

Suppose	you	want	to	buy	a	home.	In	order	to	achieve	your	goal,	you	first	need	to	be	

approved	for	a	mortgage,	and	the	success	of	your	application	will	be	determined	by	

a	predictive	algorithm	whose	internal	workings	you	know	nothing	about.	You	feel	

good	 about	 your	 chances,	 since	 your	 credit	 history	 is	 strong	 and	 your	 income	 is	

reasonably	high	in	relation	to	the	price	of	the	property	you	hope	to	purchase.	Sadly,	

your	application	is	denied,	for	reasons	known	only	to	the	algorithm	(and	maybe	its	

designers).	As	a	member	of	a	disadvantaged	group,	you	suspect	that	the	decision	was	

not	 entirely	 fair.	 You	 subsequently	 learn	 that	 many	 other	 people	 from	 the	 same	
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disadvantaged	 group	 have	 had	 similar	 experiences	with	 the	 same	 algorithm,	 and	

your	 suspicion	grows	stronger.	You	decide	 to	 investigate	 the	algorithm	 further	 in	

order	to	determine	whether	it	really	is	operating	unfairly.	But	since	the	algorithm	is	

proprietary,	you	are	not	able	to	examine	its	internal	operations.	Furthermore,	you	do	

not	 have	 any	 information	 about	 the	 character	 or	 motivations	 of	 the	 people	 who	

designed	the	algorithm.	The	one	thing	that	you	do	have	access	to	is	data	describing	

the	details	of	all	the	cases	to	which	the	algorithm	has	been	applied	so	far,	and	the	

verdicts	that	the	algorithm	gave	for	those	cases.	You	aim	to	evaluate	the	fairness	of	

the	algorithm	on	the	basis	of	this	data	alone.	In	order	to	do	so,	you	need	to	make	use	

of	 statistical	 criteria	 of	 algorithmic	 fairness,	 i.e.	 purely	 statistical	 criteria	 which	

specify	necessary	conditions	that	must	be	satisfied	by	an	algorithm’s	predictions	in	

order	for	the	algorithm	to	count	as	fair.	For	instance,	you	might	employ	the	popular	

criterion	 that,	 in	order	 to	 count	as	 fair,	 the	algorithm	should	not	yield	more	 false	

positives	for	one	group	than	it	does	for	another	(see	e.g.	Angwin	et	al	(2016),	Hardt	

et	al	(2016)).1	As	it	turns	out	though,	the	existence	and	character	of	statistical	criteria	

of	algorithmic	fairness	is	the	topic	of	sustained	and	ongoing	disagreement,	and	the	

criterion	I	mentioned	above	(amongst	others),	has	recently	been	the	target	of	some	

powerful	objections	and	impossibility	results	(see	e.g.	Chouldechova	(2017),	Corbett-

Davies	and	Goel	(2018),	Kleinberg	et	al	(2016),	Long(manuscript),	Miconi	(2017)).	

In	 fact,	 Hedden	 (2021)	 has	 recently	 presented	 a	 counterexample	which	 seems	 to	

simultaneously	 refute	10	of	 the	11	most	 influential	 criteria	 from	the	 literature	on	

algorithmic	fairness.	As	a	result,	it’s	far	from	clear	exactly	which	criteria	you	should	

employ	when	evaluating	the	fairness	of	the	suspect	lending	algorithm.	In	this	article,	

I	will	present,	motivate	and	defend	a	novel	statistical	criterion	of	algorithmic	fairness	

that	is	both	resistant	to	Hedden’s	counterexample,	and	well	equipped	to	accurately	

diagnose	unfairness	in	cases	of	the	kind	described	above.	

More	precisely,	the	plan	is	as	follows.	In	Section	2	I	begin	by	briefly	reviewing	11	

of	 the	 most	 influential	 statistical	 criteria	 of	 algorithmic	 fairness,	 before	 recalling	

	
1	In	the	present	example,	a	false	positive	would	be	a	case	where	the	algorithm	approves	an	application	

where	it	shouldn’t	have	(where	the	applicant	subsequently	defaults	on	their	mortgage).	
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Hedden’s	(2021)	counterexample,	which	simultaneously	undermines	10	of	these	11	

criteria.	 In	 Section	 3,	 I	 turn	 to	 evaluating	 the	 proper	 formulation	 and	 inherent	

limitations	of	the	1	surviving	criterion,	calibration	within	groups,	and	argue	that,	even	

in	its	most	plausible	formulation,	it	is	neither	a	necessary	nor	a	sufficient	condition	

for	algorithmic	fairness.	Section	4	is	devoted	to	introducing	and	motivating	a	novel	

criterion,	base	rate	tracking,	which	evades	Hedden’s	counterexample	and	allows	us	

to	diagnose	many	instances	of	algorithmic	unfairness	to	which	the	calibration	within	

groups	 criterion	 is	 blind.	 Finally,	 Section	 5	 considers	whether	 base	 rate	 tracking	

should	 be	 buttressed	 by	 any	 further	 statistical	 criteria	 and	 draws	 some	 general	

morals	 regarding	 the	 role	 of	 statistical	 criteria	 in	 ensuring	 the	 fair	 application	 of	

predictive	algorithms	in	society.	

2 Extant	Criteria	

Before	 introducing	 11	 extant	 candidate	 statistical	 criteria	 of	 algorithmic	 fairness,	

note	 that	 predictive	 algorithms	 can	 be	 partitioned	 into	 (at	 least)	 two	 kinds,	

depending	 on	 the	 type	 of	 verdict	 that	 they	 yield.	 Firstly,	 binary	 classification	

algorithms	output	binary	verdicts	such	as	‘approve/deny	loan’,	‘grant/deny	parole’,	

‘classify	as	high/low	risk	driver’	etc.	Typically,	one	of	the	two	possible	outcomes	of	a	

binary	classification	will	have	positive	valence	(e.g.	 ‘approve	 loan’,	 ‘classify	as	 low	

risk’,	‘grant	parole’)	and	one	will	have	negative	valence	(e.g.	‘deny	loan’,	‘classify	as	

high	 risk’,	 ‘deny	 parole’).	 Secondly,	 continuous	 risk	 scoring	 algorithms	 output	

numerical	risk	scores	that	are	 intended	to	estimate	a	subject’s	risk	of	exhibiting	a	

certain	kind	of	behaviour.	For	instance,	such	an	algorithm	might	assign	a	subject	a	

risk	 score	 that	 estimates	 the	 risk	 of	 that	 subject	 defaulting	 on	 their	 mortgage	

payments.	A	decision	on	whether	to	approve	a	mortgage	for	that	agent	will	then	be	

made	 on	 the	 basis	 of	 their	 assigned	 risk	 score.	 So	 whereas	 binary	 classification	

algorithms	generally	yield	direct	recommendations	(e.g.	‘approve/deny	mortgage’),	

continuous	risk	scoring	algorithms	yield	risk	scores	that	do	not	directly	entail	explicit	

recommendations,	although	they	can	easily	be	made	to	do	so	if	one	imposes	some	
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kind	of	 risk	 threshold	 rule	 of	 the	 form	 ‘approve	mortgages	 for	 all	 and	only	 those	

subjects	with	risk	score	less	than	x’,	 for	some	fixed	x	(see	e.g.	(Corbett-Davies	and	

Goel	 (2018),	 Long	 (manuscript))	 for	 defences	 of	 such	 threshold	 rules).	 For	 the	

purposes	 of	 this	 essay,	 we	 will	 be	 focusing	 specifically	 on	 the	 fairness	 of	 the	

judgements	(e.g.	classifications,	risk	scores	and	predictions)	produced	by	predictive	

algorithms,	rather	than	the	fairness	of	the	decisions	that	are	taken	on	the	basis	of	

those	judgements.2	

When	we’re	considering	possible	statistical	criteria	of	algorithmic	fairness,	it	is	

important	 to	 distinguish	 between	 crtieria	 used	 to	 evaluate	 binary	 classification	

algorithms	 on	 the	 one	 hand,	 and	 criteria	 used	 to	 evaluate	 numerical	 risk	 scoring	

algorithms	 on	 the	 other.	We	 begin	 (following	 Hedden	 (2021))	 by	 recalling	 three	

influential	criteria	that	have	been	proposed	as	necessary	conditions	for	the	fairness	

of	numerical	risk	scoring	algorithms.	

2.1 Criteria	for	Numerical	Risk	Scoring	Algorithms	

(1) Calibration	 Within	 Groups:	 For	 each	 possible	 risk	 score,	 the	 (expected)	

percentage	of	individuals	assigned	that	risk	score	who	are	actually	positive	is	

the	same	for	each	relevant	group	and	is	equal	to	that	risk	score.3	

(2) Balance	for	the	Positive	Class:	The	(expected)	average	risk	score	assigned	to	

those	individuals	who	are	actually	positive	is	the	same	for	each	relevant	group.	

(3) Balance	for	the	Negative	Class:	The	(expected)	average	risk	score	assigned	to	

those	individuals	who	are	actually	negative	is	the	same	for	each	relevant	group.	

	
2	I	take	these	two	issues	to	be	conceptually	distinct,	although	they	are	clearly	intimately	related.	
3	Hedden	(2021)	 formulates	 the	candidate	criteria	 in	 terms	of	expectation	values	rather	 than	actual	

frequencies,	 ‘since	 an	 algorithm	 can	 satisfy	 the	 expectational	 version	 but	 violate	 its	 actual	 relative	
frequency-based	analogue	simply	due	 to	 the	vagaries	of	chance.’	 (Hedden,	2021:	6),	and	 I	am	happy	 to	
follow	that	convention	for	the	same	reason.	Generally,	I	think	of	these	expectation	values	as	being	computed	
relative	to	objective	probability	functions	that	encode	either	physical	chances,	long	run	frequencies,	or	the	
subjective	probabilities	of	some	suitably	idealised	observer.		
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The	 motivations	 for	 these	 three	 criteria	 are	 straightforward	 and	 intuitively	

compelling.	(1)	requires	that	any	given	risk	score	should	mean	the	same	thing	(have	

the	same	evidential	significance)	for	all	groups.	By	way	of	illustration,	consider	an	

insurance	 pricing	 algorithm	 that	 assigns	 subjects	 risk	 scores	 encoding	 their	

estimated	risk	of	being	involved	in	a	car	accident.	Now	imagine	that	25%	of	all	the	

white	drivers	with	a	risk	score	of	25%	were	involved	in	an	accident,	while	only	10%	

of	black	drivers	with	a	risk	score	of	25%	were	involved	in	an	accident.	Then	it	seems	

that	the	risk	score	25%	has	different	meanings	for	white	and	black	drivers,	since	a	

white	driver	with	that	score	is	more	likely	to	be	involved	in	an	accident	than	a	black	

driver	with	the	same	score.	This	is	exactly	the	kind	of	situation	that	is	deemed	unfair	

by	(1).	Sticking	with	the	insurance	example,	(2)	simply	requires	that	in	order	to	count	

as	fair,	the	algorithms	should	assign	the	same	average	risk	score	to	the	set	of	all	white	

drivers	who	actually	ended	up	being	involved	in	accidents	as	it	does	to	the	set	of	all	

black	 drivers	 who	 actually	 ended	 up	 being	 involved	 in	 accidents.	 To	 see	 the	

motivation	 for	 this,	 imagine	 that,	 on	 average,	 white	 drivers	 who	 were	 actually	

involved	 in	 accidents	had	 lower	 risk	 scores	 than	black	drivers	who	were	actually	

involved	in	accidents.	That	would	seem	to	imply	that	the	algorithm	was	more	likely	

to	give	an	‘unsafe	driver’	(a	driver	that	ended	up	being	involved	in	an	accident)	a	low	

risk	score	if	they	were	white,	and	that	seems	unfair.	

Conversely,	(3)	requires	that	the	algorithm	should	assign	the	same	average	risk	score	

to	the	set	of	all	white	drivers	who	didn’t	actually	end	up	being	involved	in	accidents	

as	it	does	to	the	set	of	all	black	drivers	who	didn’t	actually	end	up	being	involved	in	

accidents.	Again,	 if	 the	algorithm	violated	(3),	that	would	mean	that	the	algorithm	

was	more	likely	to	give	a	‘safe	driver’	(a	driver	that	did	not	end	up	being	involved	in	

an	accident)	a	high	risk	score	if	they	were	black,	and	that	seems	unfair.	

2.2 Criteria	for	Binary	Classification	Algorithms	

The	 remaining	 seven	 criteria	 all	 impose	 necessary	 conditions	 for	 the	 fairness	 of	

binary	classification	algorithms.	
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(4) Equal	 False	 Positive	 Rates:	 The	 (expected)	 percentage	 of	 actually	 negative	

individuals	 who	 are	 falsely	 predicted	 to	 be	 positive	 is	 the	 same	 for	 each	

relevant	group.	

(5) Equal	 False	Negative	 Rates:	 The	 (expected)	 percentage	 of	 actually	 positive	

individuals	 who	 are	 falsely	 predicted	 to	 be	 negative	 is	 the	 same	 for	 each	

relevant	group.	

(6) Equal	 Positive	 Predictive	 Value:	 The	 (expected)	 percentage	 of	 individuals	

predicted	to	be	positive	who	are	actually	positive	is	the	same	for	each	relevant	

group.	

(7) Equal	 Negative	 Predictive	 Value:	 The	 (expected)	 percentage	 of	 individuals	

predicted	 to	 be	 negative	 who	 are	 actually	 negative	 is	 the	 same	 for	 each	

relevant	group.	

(8) Equal	Ratios	of	False	Positive	Rate	to	False	Negative	Rate:	The	(expected)	ratio	

of	the	false	positive	rate	to	the	false	negative	rate	is	the	same	for	each	relevant	

group.	

(9) Equal	Overall	Error	Rates:	The	(expectation	of)	the	number	of	false	positives	

and	false	negatives,	divided	by	the	number	of	individuals,	is	the	same	for	each	

relevant	group.	

(10) Statistical	 Parity:	 The	 (expected)	 percentage	 of	 individuals	 predicted	 to	 be	

positive	is	the	same	for	each	relevant	group.	

(11) Equal	Ratios	of	Predicted	Positives	to	Actual	Positives:	The	(expectation	of)	

the	number	of	individuals	predicted	to	be	positive,	divided	by	the	number	of	

individuals	who	are	actually	positive,	is	the	same	for	each	relevant	group.	

Again,	 the	 basic	 philosophical	motivations	 behind	most	 of	 these	 criteria	 seem	

quite	 robust	 at	 first	 glance.	 Sticking	 with	 the	 insurance	 pricing	 example,	 we	 can	

imagine	now	that,	as	well	as	a	numerical	risk	scoring	algorithm	that	assigns	subjects	

quantitative	risk	scores,	we	also	have	a	binary	classification	algorithm	that	simply	

attempts	 to	 determine	whether	 or	 not	 drivers	 are	 ‘high	 risk’	 (as	 opposed	 to	 ‘low	
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risk’).	Criteria	(4)	and	(5)	are	directly	analogous	to	(2)	and	(3),4respectively,	although	

they	are	formulated	in	terms	of	binary	predictions	rather	than	numerical	risk	scores.	

While	(2)	required	that	safe	black	drivers	should	not	be	more	likely	to	be	assigned	a	

high	risk	score	than	safe	white	drivers,	(4)	requires	that	safe	black	drivers	should	not	

be	more	likely	to	be	designated	as	‘high	risk’	than	safe	white	drivers.	Similarly,	while	

(3)	required	that	unsafe	white	drivers	should	not	be	more	likely	to	be	assigned	a	low	

risk	score	than	unsafe	black	drivers,	(5)	requires	that	unsafe	white	drivers	should	

not	be	more	likely	to	be	designated	as	‘low	risk’	than	unsafe	black	drivers.	

Just	 as	 (4)	 and	 (5)	 are	directly	 analogous	 to	 (2)	 and	 (3),	 both	 (6)	 and	 (7)	 are	

directly	analogous	to	(1).	While	(1)	required	that	each	possible	risk	score	have	the	

same	evidential	import	for	all	groups,	(6)	and	(7)	likewise	require	that	both	possible	

binary	predictions	have	 the	same	evidential	 import	 for	all	groups.	For	 instance,	 if	

30%	of	white	 subjects	 that	 are	 classed	 as	 ‘high	 risk’	 by	 our	 binary	 algorithm	are	

actually	involved	in	accidents	while	only	20%	of	black	subjects	that	are	classed	as	

‘high	risk’	are	actually	involved	in	accidents,	that	would	suggest	that	the	prediction	

‘high	risk’	means	different	things	(has	different	evidential	import)	for	white	drivers	

and	black	drivers,	and	that	seems	unfair.	

(8)	 is	 motivated	 by	 the	 idea	 that	 predictive	 errors	 should	 lean	 in	 the	 same	

direction	for	all	groups.	For	instance,	if	white	drivers	had	more	false	negatives	than	

false	positives,	but	black	drivers	had	more	false	positives	than	false	negatives,	that	

would	mean	 that	 the	algorithm	was	erring	on	 the	 side	of	 caution	 (in	 the	 sense	of	

classifying	many	safe	drivers	as	unsafe)	for	black	drivers,	but	erring	on	the	side	of	

risk	(in	the	sense	of	classifying	many	unsafe	drivers	as	safe)	for	white	drivers.	That	

would	seem	unfair.	(9)	simply	requires	that	the	algorithm	should	be	equally	accurate	

for	all	groups.	Although	violations	of	this	condition	do	not	obviously	imply	that	one	

group	 is	 being	 systematically	 mistreated	 in	 comparison	 to	 another,	 it	 obviously	

seems	desirable	that	our	algorithms	should	be	equally	accurate	for	all	groups.	

	
4	Pleiss	et	al	 (2017)	 refer	 to	 the	average	risk	scores	 referenced	 in	 (2)	and	 (3)	 the	 ‘generalised	 false	

negative’	and	‘generalised	false	negative’	rates,	respectively.	
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(10)	stipulates	that	the	percentage	of	subjects	predicted	to	be	positive	should	be	

the	same	for	each	group,	i.e.	the	percentage	of	black	drivers	that	are	classed	as	‘high	

risk’	should	be	equal	to	the	percentage	of	white	drivers	that	are	classed	as	‘high	risk’.	

Note	that	(10)	will	be	violated	by	an	optimal	predictive	algorithm	whenever	the	base	

rates	of	the	groups	are	not	equal.	(11)	generalises	(10)	in	the	sense	that	satisfaction	

of	(11)	entails	satisfaction	of	(10)	when	the	base	rates	are	equal,	but	allows	for	the	

fairness	of	optimal	predictive	algorithms	when	base	rates	are	not	equal.	

(1)–(11)	represent	the	most	influential	and	widely	discussed	statistical	criteria	of	

algorithmic	 fairness	 from	 the	 literature.	 As	we’ve	 seen,	 the	majority	 of	 them	 are	

motivated	 by	 prima-facie	 compelling	 philosophical	 intuitions	 about	 the	 nature	 of	

fairness.	If	we	were	able	to	accept	even	a	decent	subset	of	these	criteria	as	genuine	

necessary	conditions	for	algorithmic	fairness,	then	we	would	have	access	to	powerful	

diagnostic	 tools	 that	 would	 allow	 us	 to	 evaluate	 the	 fairness	 of	 proprietary	

algorithms	 whose	 inner	 workings	 and	 design	 processes	 are	 often	 opaque	 and	

mysterious.	As	it	turns	out	though,	there	is	good	reason	to	think	that	the	vast	majority	

of	these	criteria	aren’t	really	necessary	conditions	for	algorithmic	fairness	at	all.	First	

of	all,	there	exist	a	number	of	famous	impossibility	results	which	show	that	various	

combinations	of	these	11	conditions	can	only	be	jointly	satisfied	in	unrealistic	and	

trivial	special	cases	(see	e.g.	 	Chouldechova	(2017),	Kleinberg	et	al	(2016),	Miconi	

(2017)).	Secondly,	and	more	pertinently	for	present	purposes,	Hedden	(2021)	has	

provided	an	example	of	an	obviously	fair	algorithm	that	simultaneously	violates	10	

of	the	11	criteria,	thereby	refuting	their	claim	to	constitute	necessary	conditions	for	

algorithmic	fairness.	I	turn	now	to	briefly	reviewing	this	example.	

Suppose	that	there	exist	two	rooms,	A	and	B,	each	containing	20	people.	Of	the	

room	A	people,	12	are	each	assigned	coins	with	a	bias	of	 	and	the	remaining	8	are	

each	assigned	coins	with	a	bias	of	 .	Of	the	room	B	people,	10	are	each	assigned	coins	

with	a	bias	of	 	and	10	are	each	assigned	coins	with	a	bias	of	 .	We	want	to	design	an	

algorithm	that	predicts,	 for	each	person,	whether	 their	coin	will	 land	heads	when	

tossed.	 Of	 course,	 the	 best	 (most	 predictively	 accurate)	 possible	 numerical	 risk	

scoring	algorithm	is	the	one	that	assigns	each	person	a	risk	score	equal	to	the	bias	of	
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their	coin.	The	best	possible	binary	classification	algorithm	is	the	one	that	assigns	

each	person	whose	coin	has	a	bias	greater	than	 	a	prediction	of	‘heads’	and	assigns	

everyone	else	a	prediction	of	 ‘tails’.	Apart	 from	being	predicatively	optimal,	 these	

algorithms	 are	 perfectly	 fair.	 Nobody	 could	 plausibly	 object	 to	 the	 application	 of	

algorithms	 such	 as	 these	 on	 the	 ground	 that	 they	 treat	 one	 group	 unfairly	 in	

comparison	to	another.	But,	as	Hedden	notes,	they	violate	10	of	the	11	criteria	listed	

above.	For	instance,	the	false	positive	and	false	negative	rates	for	room	A	are	3/10	

and	 1/10,	 respectively,	while	 the	 corresponding	 rates	 for	 room	B	 are	 both	 4/10,	

which	entails	a	violation	of	criteria	(4)	and	(5).	The	only	prospective	criterion	that	is	

satisfied	 by	 either	 of	 these	 algorithms	 is	 (1),	 calibration	 within	 groups,	 which	 is	

satisfied	 by	 the	 numerical	 risk	 scoring	 algorithm.	 The	 algorithm	 assigns	 each	

individual	a	 risk	 score	equal	 to	 the	bias	of	 their	assigned	coin,	 regardless	of	 their	

group.	This	entails	that	every	risk	score	has	the	same	evidential	import	across	both	

groups,	which	is	all	that	is	required	by	(1).	In	sum,	this	example	clearly	demonstrates	

that	only	the	first	of	the	eleven	prospective	statistical	criteria	of	algorithmic	fairness	

is	plausibly	a	necessary	condition	for	an	algorithm	to	count	as	fair.	

3 Calibrating	Calibration	

At	this	stage	then,	calibration	within	groups	is	the	only	candidate	statistical	criterion	

of	algorithmic	fairness	that	we	have	good	grounds	to	endorse.	This	raises	a	number	

of	questions.	Most	pertinently,	one	is	compelled	to	ask	whether	calibration	within	

groups	might	actually	be	both	a	necessary	and	a	sufficient	condition	for	algorithmic	

fairness.	And	if	the	answer	to	this	first	question	turns	out	to	be	‘no’	(as	it	will),	one	

will	also	be	compelled	to	ask	whether	we	can	identify	any	further	statistical	criteria	

of	algorithmic	fairness	that	help	us	to	accurately	diagnose	injustice	in	the	application	

of	 predictive	 algorithms	 whose	 design	 processes	 and	 inner	 workings	 may	 be	

completely	 unknown.	 In	 this	 section,	 I	 will	 actually	 argue	 that	 calibration	within	

groups	is	neither	a	necessary	nor	a	sufficient	condition	for	algorithmic	fairness.	But	

before	doing	this,	it	will	be	useful	to	pause	briefly	to	consider	the	proper	formulation	
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of	 the	 criterion.	 Towards	 this	 end,	 recall	 that,	 as	 stated	 in	 (1),	 calibration	within	

groups	requires	

Calibration	Within	Groups	(Strong):	For	each	possible	risk	score,	the	(expected)	

percentage	of	individuals	assigned	that	risk	score	who	are	actually	positive	is	the	same	for	

each	relevant	group	and	is	equal	to	that	risk	score.	

This	formulation	of	the	condition	can	be	contrasted	with	the	following,	logically	

weaker	formulation,	

Calibration	Within	Groups	(Weak):	For	 each	 possible	 risk	 score,	 the	 (expected)	

percentage	of	individuals	assigned	that	risk	score	who	are	actually	positive	is	the	same	for	

each	relevant	group.	

Like	the	strong	formulation,	the	weak	formulation	requires	that	every	possible	

risk	score	should	have	the	same	evidential	import	for	all	relevant	groups	in	order	for	

the	algorithm	to	count	as	fair.	In	the	insurance	example,	it	requires	that	if	10%	of	the	

white	drivers	assigned	a	risk	score	of	10%	actually	end	up	in	accidents,	then	it	should	

also	be	 the	 case	 that	10%	of	 the	black	drivers	 assigned	 that	 risk	 score	 end	up	 in	

accidents.	The	difference	between	 the	 formulations	 is	 that	 the	 strong	 formulation	

imposes	a	stringent	constraint	on	the	accuracy	of	the	algorithm:	that	the	proportion	

of	subjects	 from	any	group	that	are	assigned	a	given	risk	score	should	actually	be	

equal	to	that	risk	score.	For	instance,	if	9%	of	the	white	drivers	who	are	assigned	a	

risk	score	of	10%	actually	get	involved	in	accidents,	then	the	strong	formulation	will	

deem	the	algorithm	to	be	unfair,	even	if	it’s	also	the	case	9%	of	those	drivers	from	all	

other	relevant	groups	who	are	assigned	a	risk	score	of	10%	get	involved	in	accidents.	

In	 essence,	 the	 weak	 formulation	 requires	 that	 the	 risk	 score	 have	 the	 same	

evidential	import	for	all	groups,	but	doesn’t	impose	any	further	restrictions	on	how	

risk	 scores	 relate	 to	 actual	 or	 expected	 frequencies.	 In	 contrast,	 the	 strong	
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formulation	 poses	 a	 non-relational	 constraint	 on	 the	 accuracy	 of	 the	 risk	 scores.	

Here’s	an	example	which	shows	that	the	strong	formulation	is	too	strong.	

Suppose	again	that	there	are	two	rooms,	A	and	B,	containing	10	people	each.	All	

people	are	assigned	2	coins,	the	first	of	which	is	a	fair	coin	with	a	known	bias	of	 .	

The	second	coins	have	unknown	biases	that	are	not	available	to	the	algorithm.	As	it	

turns	 out,	 the	 biases	 of	 the	 second	 coins	 are	 all	 .	 The	 algorithm	 aims	 to	 predict	

whether	both	of	a	subject’s	two	coins	will	land	heads	when	flipped.	Since	the	biases	

of	the	second	coins	are	not	available	to	the	algorithm,	it	operates	by	assuming	that	

all	the	second	coins	have	a	uniform	bias	of	 	and	then	assigns	each	subject	a	risk	score	

equal	 to	 the	products	of	 the	biases	of	 their	 two	coins,	 i.e.	 .	 I	 think	 this	 is	

obviously	fair.	The	algorithm	assigns	everyone	from	both	groups	the	same	risk	score	

on	the	basis	of	the	same	evidence.	And	indeed,	the	algorithm	trivially	satisfies	the	

weak	formulation	of	calibration	within	groups.	The	only	risk	score	assigned	by	the	

algorithm	is	 	and	the	proportion	of	Room	A	people	assigned	this	score	whose	coins	

both	land	heads	is	 ,	which	is	equal	to	the	proportion	of	Room	B	people	assigned	the	

score	whose	coins	both	land	heads.	However,	the	algorithm	also	violates	the	strong	

formulation	of	 calibration	within	groups,	 since	 the	expected	proportion	of	people	

from	either	room	assigned	the	risk	score	 	who	actually	tossed	two	heads	( )	is	not	

equal	to	that	risk	score.	

I	take	this	example	to	show	that	only	the	weaker	formulation	of	calibration	within	

groups	is	plausibly	a	necessary	condition	for	algorithmic	fairness.	While	I	agree	that	

the	above	algorithm	is	non-ideal	in	the	sense	that	it	systematically	underestimates	

the	risk	of	agents	tossing	two	heads,	I	also	think	it’s	clear	that	this	shortcoming	is	not	

helpfully	described	as	‘unfairness’.	If	one	insists	on	calling	this	kind	of	shortcoming	

‘unfair’,	 then	 it’s	 clear	 that	 we	 need	 to	 distinguish	 between	 two	 conceptions	 of	

algorithmic	unfairness:	one	that	applies	to	uniform	failings	of	accuracy	that	do	not	

track	 divisions	 between	 groups,	 and	 one	 that	 manifests	 itself	 in	 inequitable	

differences	in	the	way	that	different	groups	are	treated	by	the	algorithm.	I	think	it’s	

apparent	that	the	first	conception	is	not	the	target	of	extant	investigations	into	the	
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nature	 of	 algorithmic	 fairness,	 and	 hence	 that	 it	 can	 legitimately	 be	 bracketed	 in	

subsequent	discussion.	Overall,	 the	above	example	makes	 it	obvious	 that	only	 the	

weaker	 formulation	of	 calibration	within	groups	 can	plausibly	be	 considered	as	a	

candidate	 necessary	 condition	 for	 algorithmic	 fairness,	 since	 the	 stronger	

formulation	depends	on	features	of	an	an	algorithm’s	predictions	that	are	not	directly	

relevant	to	its	fairness.	

3.1 The	Non-Necessity	of	Calibration	

But	 even	 under	 this	 weaker	 and	 more	 plausible	 formulation,	 calibration	 within	
groups	fails	as	a	necessary	condition	for	algorithmic	fairness.	To	see	why,	consider	
the	following	insurance	pricing	algorithm,	which	assigns	risk	scores	to	drivers	on	the	
basis	of	their	credit	scores.	
	

Age	 Credit	Score	 Base	Rate	 Risk	Score	

Young	 Good	 	 	

Young	 Bad	
	 	

Old	 Good	 	 	

Old	 Bad	 	 	
	

On	 average,	 3/80	 young	 drivers	 are	 involved	 in	 accidents,	 regardless	 of	 their	

credit	 scores,	 while	 th	 of	 older	 drivers	 with	 bad	 credit	 scores	 are	 involved	 in	

accidents,	 compared	 to	 only	 th	 of	 those	with	 good	 credit	 scores.	 The	 algorithm	

simply	assigns	risk	scores	of	 	to	all	drivers	with	good	credit	scores,	and	 	to	drivers	

with	bad	 credit	 scores.	 For	 simplicity,	 assume	 that	 the	 algorithm	 is	 applied	 to	 an	

equal	number	of	drivers	 from	each	of	 the	 four	profiles,	which	 implies	 that	 young	

drivers	and	old	drivers	both	have	an	overall	base	rate	of	3/80.	Then	the	algorithm	

violates	calibration	within	groups,	since	the	base	rate	for	young	drivers	with	a	risk	

score	of	 	is	 	while	the	base	rate	for	old	drivers	with	the	same	risk	score	is	 ,	which	

means	that	the	risk	score	 	has	different	evidential	implications	for	young	drivers	

than	 it	does	 for	older	drivers.	However,	 it	 seems	wrong	 to	 say	 that	 the	algorithm	

treats	older	drivers	unfairly	in	comparison	to	young	drivers.	For,	while	older	drivers	
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with	a	risk	score	of	 	are	actually	 less	risky	 than	 their	younger	counterparts,	 the	

converse	is	true	for	older	drivers	with	a	risk	score	of	 ,	who	have	a	higher	true	risk	

( )	than	their	younger	counterparts	( ).	The	algorithm	does	not	systematically	treat	

younger	drivers	more	favourably	than	older	drivers	or	vice	versa.	On	balance,	it	gives	

them	equal	treatment,	evinced	by	the	fact	that	the	average	risk	score	for	both	groups	

is	3/40,	equal	to	half	the	overall	base	rates	for	both	groups.	Calibration	within	groups	

says	that	the	algorithm	treats	old	drivers	unfairly	in	comparison	to	young	drivers,	

but	that	is	clearly	not	correct	in	this	case.	Neither	group	is	systematically	preferred	

to	the	other.	

	 One	might	be	tempted	to	reply	that	the	algorithm	is	still	unfair,	even	if	 it	

does	not	treat	old	drivers	unfairly	in	comparison	to	young	drivers,	since	it	treats	old	

drivers	with	good	credit	scores	unfairly	in	comparison	to	young	drivers	with	good	

credit	scores.	I	argued	that	young	drivers	are	not	treated	unfairly	in	comparison	to	

old	drivers	because	the	two	failures	of	calibration	evened	each	other	out	–	old	drivers	

with	good	credit	scores	are	treated	unfairly	compared	to	young	drivers	with	good	

credit	scores,	but	young	drivers	with	bad	credit	scores	are	treated	unfairly	compared	

to	old	drivers	with	bad	credit	scores.	But	this	doesn’t	change	the	fact	that	old	drivers	

with	good	credit	scores	are	treated	unfairly	compared	to	young	drivers	with	good	

credit	 scores	 (since	 they	 have	 a	 lower	 base	 rate	 but	 the	 same	 risk	 score),	which	

suggests	that	the	algorithm	is	still	unfair,	even	if	that	unfairness	doesn’t	stem	from	

an	overall	age	bias.	

In	response	to	this	objection,	it	is	important	to	draw	a	distinction	between	two	

distinct	possible	 interpretations	of	 the	calibration	within	groups	criterion.	Firstly,	

one	 can	 interpret	 the	 criterion	 as	 a	 diagnostic	 tool	 for	 identifying	 whether	 an	

algorithm	treats	some	specific	groups	unfairly	in	comparison	to	some	others.	On	this	

interpretation	the	criterion	can	be	used	to	check	whether	the	pricing	algorithm	above	

treats	young	drivers	unfairly	in	comparison	to	old	drivers,	for	instance.	

And	as	we’ve	just	seen,	the	criterion	gives	an	intuitively	incorrect	verdict	here,	

since	it	identifies	
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age	 bias	 where	 there	 does	 not	 seem	 to	 be	 any.5	 Secondly,	 one	 can	 interpret	 the	

criterion	 as	 a	 more	 coarse	 grained	 diagnostic	 tool	 that	 simply	 helps	 to	 identify	

whether	the	algorithm	is	unfair	overall.	On	this	interpretation,	the	algorithm	is	unfair	

just	in	case	it	is	possible	to	identify	any	groups	with	respect	to	which	the	calibration	

criterion	 is	 violated.	 The	 insurance	 pricing	 algorithm	 described	 above	 is	 not	

necessarily	a	counterexample	to	this	interpretation	of	the	criterion,	since	one	could	

argue	that	the	algorithm	is	unfair	overall	(on	the	grounds	that	it	treats	old	drivers	

with	good	credit	scores	unfairly	compared	to	young	drivers	with	good	credit	scores),	

and	there	are	multiple	failures	of	calibration.	But	adopting	the	second	interpretation	

doesn’t	solve	all	of	our	problems.	Firstly,	note	that,	even	if	calibration	within	groups	

is	a	necessary	condition	for	an	algorithm	being	fair	overall,	it	is	still	desirable	to	have	

access	 to	more	 fine	grained	criteria	 that	allow	us	 to	 identify	not	only	whether	an	

algorithm	is	biased	in	general,	but	also	which	groups	are	being	treated	unfairly	 in	

comparison	 to	 which	 other	 groups,	 since	 this	 information	 is	 clearly	 crucial	 to	

understanding	and	addressing	 the	unfairness.	Secondly,	 I	am	skeptical	of	 the	 idea	

that	we	should	treat	all	violations	of	calibration	as	conclusive	evidence	of	injustice.	

For	 instance,	one	 can	 imagine	an	algorithm	 that	 is	 calibrated	with	 respect	 to	age,	

gender,	race,	education,	income,	nationality,	zip	code,	sexual	orientation	and	political	

and	religious	beliefs,	but	that	is	not	calibrated	with	respect	to	whether	someone	lives	

in	 an	odd	or	 even	numbered	house.	 In	 this	 case,	 it	might	 be	 right	 to	 say	 that	 the	

algorithm	 treats	 even	 dwellers	 unfairly	 in	 comparison	 to	 odd	 dwellers,	 but	 that	

doesn’t	seem	like	a	good	reason	to	simply	dismiss	the	algorithm	as	‘unfair’.	

	
5	I’ll	briefly	address	another	possible	criticism	here.	One	could	imagine	a	case	in	which	an	

algorithm	gives	preferential	treatment	to	black	women	and	harsh	treatment	to	black	men	in	
such	a	way	that	the	two	biases	`cancel	out’	as	in	the	previous	example.	In	this	case,	there	is	a	
strong	inclination	to	charge	the	algorithm	with	racial	bias,	which	seems	to	undermine	the	
alleged	 counterexample	 to	 the	 necessity	 of	 calibration.	 I	 think	 this	 kind	 of	 case	 can	 be	
reasonably	explained	by	the	fact	that	racial	bias	has,	historically,	been	the	norm	rather	than	
the	exception	in	western	society,	and	that	we	therefore	have	strong	reasons	to	treat	these	
subpopulation	biases	as	prima	facie	evidence	for	a	more	general	race	bias.	But	in	cases	like	
the	age/credit	score	case	described	above,	the	situation	is	different	and	it	does	not	seem	that	
the	subpopulation	biases	(which	point	in	opposite	directions)	generally	count	as	evidence	for	
more	coarse	grained	biases	in	the	same	way.	That’s	why	we	intuitively	think	that	there’s	no	
age	 bias	 at	 play	 in	 the	 age/credit	 score	 example,	 whilst	 also	 being	 strongly	 disposed	 to	
suspect	race	bias	in	the	case	I	just	described.		
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Clearly,	we	are	more	interested	in	evaluating	statistical	markers	of	‘significant’	group	

distinctions	(e.g.	race,	gender,	age	etc)	that	track	group	distinctions	with	important	

social,	political,	economic	and	historical	origins	and	ramifications.6	Indeed,	it	seems	

unrealistic	 to	expect	our	algorithms	to	be	even	roughly	calibrated	with	respect	 to	

every	possible	group	distinction,	which	suggests	 that	 the	most	we	can	reasonably	

demand	is	that	they	be	calibrated	with	respect	to	all	‘significant’	group	distinctions.	

But	 then	we	run	straight	back	 into	the	counterexample	outlined	above.	One	could	

certainly	 make	 a	 case	 for	 the	 claim	 that	 the	 group	 distinction	 young/old	 is	 a	

significant	one,	while	the	distinction	young	&	good	credit/young	&	bad	credit/old	&	

good	credit/old	&	bad	credit	is	not	(if	one	isn’t	convinced	by	this	case,	replace	credit	

score	with	something	more	trivial).	This	then	suggests	that	the	algorithm	is	actually	

fair	after	all,	since	it	seems	to	be	fair	with	respect	to	age,	which	is	the	only	significant	

group	distinction	 in	play.	But	 since	 the	 algorithm	 is	not	 calibrated	across	 the	 age	

distinction,	the	criterion	will	give	the	incorrect	verdict	that	the	algorithm	is	unfair	

overall.	So	the	defender	of	the	second	interpretation	of	calibration	within	groups	has	

two	choices.	They	can	either	(i)	argue	that	all	group	distinctions	are	equally	relevant	

to	an	algorithm’s	fairness,	in	which	case	they	avoid	the	counterexample	(because	the	

more	fine	grained	distinction	is	treated	as	relevant	to	the	algorithm’s	fairness,	which	

implies	 that	 the	 algorithm	 is	 unfair),	 at	 the	 cost	 of	 placing	 unrealistic	 and	

unreasonable	demands	on	predictive	algorithms,	or	(ii)	argue	that	only	‘significant’	

group	distinctions	really	matter	when	it	comes	to	an	algorithm’s	fairness,	in	which	

case	the	counterexample	still	stands	(because	the	more	fine	grained	partition	is	not	

treated	as	relevant	to	the	algorithm’s	fairness,	which	means	that	the	algorithm	is	fair	

even	though	calibration	is	violated).	

Overall	 then,	 I	 do	 not	 think	 that	 calibration	 within	 groups	 can	 be	 helpfully	

employed	as	a	necessary	condition	for	the	overall	fairness	of	predictive	algorithms.	

And	even	if	one	is	not	convinced	on	that	point,	the	observation	(established	by	the	

	
6	It	goes	without	saying	that	the	question	of	what	counts	as	a	significant	group	distinction	is	a	deep	and	

difficult	one	that	goes	well	beyond	the	scope	of	the	present	work,	but	see	e.g.	Lippert-Rasmussen	(2013),	
Thomsen	(2017)	for	discussions	of	`socially	salient	traits’.			
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insurance	pricing	example)	that	calibration	is	not	a	plausible	necessary	condition	for	

identifying	when	an	algorithm	treats	one	group	unfairly	 in	comparison	to	another	

still	stands.	As	I	stressed	above,	statistical	criteria	of	algorithmic	fairness	should	be	

capable	of	accurately	identifying	not	only	when	an	algorithm	is	generally	unfair,	but	

also	when	it	treats	one	specific	group	unfairly	in	comparison	to	another.	I’ve	shown	

that	being	calibrated	with	respect	to	the	relevant	groups	is	not	a	necessary	condition	

for	treating	those	groups	fairly.	

3.2 The	Insufficiency	of	Calibration	

The	discussion	so	 far	has	motivated	 the	view	that	none	of	 the	11	most	 influential	

statistical	 criteria	 from	 the	 literature	 are	 plausible	 necessary	 conditions	 for	

algorithmic	 fairness.	 Before	moving	 on	 the	 propose	 a	 novel	 criterion,	 it	 is	 worth	

pausing	to	consider	why	calibration	within	groups	is	not	a	sufficient	condition	for	

algorithmic	 fairness.	While	 many	 authors	 (incorrectly,	 in	 my	 view)	 still	 consider	

calibration	to	be	a	plausible	necessary	condition,	 it	 is	widely	acknowledged	that	it	

falls	short	of	sufficiency.	Hedden,	for	example,	writes,	‘there	may	be	other	necessary	

conditions	 for	 fairness	 that	concern	 the	algorithm’s	 inner	workings	and	so	do	not	

count	as	statistical	criteria...For	instance,	fairness	may	require	that	the	algorithm	be	

blinded	 to	 protected	 class	 membership,	 and	 to	 any	 proxies	 for	 protected	 class.’	

(Hedden,	 2021:	 p17).	 While	 I	 agree	 with	 Hedden	 that	 there	 are	 certainly	 some	

necessary	 conditions	 for	 algorithmic	 fairness	 that	 cannot	 be	 properly	 articulated	

purely	in	terms	of	the	statistical	properties	of	an	algorithm’s	predictions	(more	on	

this	later),	I	also	think	it’s	clear	that	(i)	it’s	important	to	identify	the	strongest	possible	

statistical	criteria,	since	we	often	lack	any	access	to	the	design	or	inner	working	of	

the	relevant	algorithms	and	therefore	often	need	to	rely	on	statistical	criteria,	and	

(ii)	identifying	useful	and	plausible	non-statistical	criteria	is	not	obviously	any	easier	

than	 identifying	 statistical	 ones.	 For	 instance,	 the	 requirement	 that	 an	 algorithm	

should	 be	 blinded	 to	 group	membership	 and	 should	 not	 rely	 on	 any	 proxies	 for	

protected	groups	 is	 far	 from	obvious.	 In	 fact,	 it	has	been	argued	(see	e.g.	Corbett-

Davies	and	Goel	(2018))	that	there	are	some	cases	in	which	fairness	requires	that	the	
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algorithm	explicitly	take	group	membership	into	account	(see	below).	Furthermore,	

the	task	of	defining	what	counts	as	a	‘proxy’	for	group	membership	is	a	non-trivial	

one	 that,	 it	 seems	 to	 me,	 can	 likely	 only	 be	 answered	 in	 terms	 of	 statistical	

relationships	between	the	group	and	the	prospective	proxy	variable.	Overall	then,	I	

think	it’s	important	that	we	don’t	give	up	on	the	goal	of	identifying	further	statistical	

criteria	of	algorithmic	fairness,	even	if	we	acknowledge	that	they	will	probably	never	

be	 able	 to	 tell	 the	 full	 story.	 After	 all,	 in	 most	 real	 world	 cases,	 the	 statistical	

properties	of	the	algorithm’s	predictions	are	all	we	have	access	to.	In	the	next	section,	

I	turn	to	introducing	a	novel	statistical	criterion	of	algorithmic	fairness	that	is	able	to	

diagnose	 many	 instances	 of	 unfairness	 that	 would	 be	 missed	 by	 the	 calibration	

within	groups	criterion,	and	does	so	without	falling	foul	of	Hedden’s	counterexample	

or	the	counterexample	to	calibration	given	§3.1.	But	before	doing	so,	it	will	be	helpful	

to	consider	an	example	that	clearly	illustrates	why	calibration	within	groups	is	not	a	

sufficient	condition	for	algorithmic	fairness.	

Imagine	 a	 bank	 that	 wants	 to	 discriminate	 against	 black	 loan	 applicants,	 and	

suppose	 that	 black	 applicants	 tend	 to	 live	 in	 zip	 codes	with	 higher	 than	 average	

default	rates,	although,	within	any	given	zip	code,	black	applicants	actually	have	the	

same	 average	 default	 rate	 as	 other	 applicants	 from	 the	 same	 area.	 The	 bank	 can	

achieve	its	discriminatory	agenda	by	assigning	risk	scores	to	applicants	based	purely	

on	their	zip	code,	and	ignoring	other	relevant	factors	like	income,	credit	history	etc.	

This	 is	 an	 idealised	 illustration	 of	 a	 real	 historical	 phenomena	 called	 ‘redlining’,	

which	lenders	used	to	avoid	giving	mortgages	to	minority	applicants	 in	the	1930s	

(see	e.g.	Hillier	(2003)).	This	kind	of	case	is	widely	cited	as	a	paradigmatic	example	

of	an	unfair	algorithm,	and	I	think	it’s	clear	that	any	adequate	account	of	algorithmic	

fairness	should	yield	the	verdict	that	this	kind	of	practice	is	 indeed	unfair.	But	it’s	

easy	to	see	that	the	calibration	within	groups	criterion	is	unable	to	properly	diagnose	

the	unfairness	inherent	in	cases	of	this	kind.	Specifically,	consider	the	toy	example	

illustrated	by	the	table	below.	
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Redlining	1	
	

Race	 Zip	 Credit	 Number	 Default	Rate	 Risk	Score	

White	 TR10	 Good	 90	
	 	

White	 TR10	 Bad	 30	
	 	

White	 TR11	 Good	 40	 	 	

White	 TR11	 Bad	 40	
	 	

Black	 TR10	 Good	 60	
	 	

Black	 TR10	 Bad	 20	
	 	

Black	 TR11	 Good	 60	
	 	

Black	 TR11	 Bad	 60	
	 	

	

Here,	we	consider	two	zip	codes,	TR10	and	TR11.	Blacks	are	a	minority	in	TR10	

but	are	a	majority	in	TR11.	On	average,	applicants	in	TR10	have	a	lower	default	rate	

than	those	in	TR11.	

The	discriminatory	 algorithm	assigns	 all	 applicants	 in	TR10	 a	 risk	 score	 of	 	 and	

applicants	 in	 TR11	 a	 risk	 score	 of	 .	 It’s	 also	 true	 that,	 for	 both	 zip	 codes,	 the	

proportion	of	black	and	white	applicants	with	good	credit	scores	is	the	same	( 	for	

TR10	and	 	for	TR11),	as	is	the	default	rate	( 	for	TR10	and	 	for	TR11).	Furthermore,	

an	applicant’s	credit	score	is	a	perfect	indicator	of	their	true	default	risk,	in	the	sense	

that,	regardless	of	their	race	and	zip	code,	20%	of	applicants	with	bad	credit	scores	

go	on	to	default,	and	10%	of	applicants	with	good	credit	scores	do	so.	By	ignoring	

credit	 score	 and	basing	 risk	 scores	purely	on	 applicants’	 zip	 codes,	 the	 algorithm	

seems	to	treat	black	applicants	unfairly	in	comparison	to	white	applicants.	However,	

it’s	easy	to	see	that	the	algorithm	satisfies	the	weak	formulation	of	the	calibration	

within	groups	criterion.	For,	the	proportion	of	white	applicants	assigned	a	risk	score	

of	 	who	actually	default	 is	 ,	which	 is	equal	 to	 the	proportion	of	black	applicants	
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assigned	a	risk	score	of	 	who	actually	default,	and	the	proportion	of	white	applicants	

assigned	a	risk	score	of	 	who	actually	default	is	 ,	which	is	equal	to	the	proportion	

of	black	applicants	assigned	a	risk	score	of	 	who	actually	default.	This	means	that	

both	risk	scores	have	the	same	evidential	import	for	both	groups,	and	hence	that	the	

algorithm	satisfies	the	weak	formulation	of	calibration	within	groups.	This	 in	turn	

establishes	that	calibration	within	groups	is	not	a	sufficient	condition	for	algorithmic	

fairness,	and	that	even	if	one	still	thinks	that	calibration	is	a	necessary	condition	for	

algorithmic	 fairness,	 one	 would	 still	 need	 further	 criteria	 in	 order	 to	 diagnose	

unfairness	in	cases	like	this.	

But	before	 going	on	 to	 identify	 those	 alternative	 criteria,	 it	will	 be	prudent	 to	

briefly	clarify	exactly	what	aspects	of	the	Redlining	1	example	generate	the	obvious	

unfairness.	First	of	all,	if,	as	in	the	actual	historical	case,	the	creators	of	the	algorithm	

crafted	it	with	the	intention	of	disadvantaging	black	applicants,	then	it’s	obvious	that	

the	 designer’s	 actions	 in	 designing	 and	 constructing	 the	 algorithm	 themselves	

constitute	a	source	of	injustice	and	unfairness.	Secondly,	even	if	the	designers	of	the	

algorithm	did	not	explicitly	intend	to	disadvantage	black	applicants,	one	could	argue	

that	 the	 correlations	between	 race,	 zip	 code	and	default	 rates	 are	 themselves	 the	

product	 of	 unjust	 social	 economic	historical	 trends,	 and	hence	 that	 it	 is	 unjust	 to	

apply	an	algorithm	that	exploits	those	correlations	without	recognising,	and	in	some	

way	compensating	for,	their	unjust	historical	origin.	It	is	important	to	recognise	that	

these	obvious	sources	of	unfairness	are	both	in	some	sense	external	to	the	algorithm	

itself.	The	unjust	intentions	of	the	designers	demonstrate	that	the	algorithm	was	the	

product	 of	 an	 unjust	 and	 unfair	 algorithmic	 design	 process.	 The	 fact	 that	 the	

correlations	 between	 race,	 zip	 code	 and	 default	 rates	 are	 products	 of	 unjust	 and	

unfair	historical	conditions	shows	that	even	if	the	predictions	of	the	algorithm	are	

not	intrinsically	unfair,	 it	may	still	be	unfair	to	actually	use	the	algorithm	to	make	

important	 decisions	without	 attempting	 to	 appropriately	 address	 those	 historical	

injustices.	 But	 I	 don’t	 think	 that	 either	 of	 these	 observations	 show	 that	 the	

algorithm’s	predictions	are	themselves	intrinsically	unfair.	While	this	might	seem	like	

a	rather	pedantic	observation,	it	will	have	important	implications	further	down	the	
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line.	More	generally,	I	think	that,	in	discussions	of	algorithmic	fairness,	it	is	crucial	to	

keep	 track	 of	 distinctions	 between	 different	 kinds	 of	 unfairness,	 since	 the	

mechanisms	 that	 are	 best	 employed	 to	 combat	 or	 compensate	 for	 one	 kind	 of	

unfairness	 (e.g.	 the	 unjust	 historical	 origins	 of	 the	 correlations	 exploited	 by	 an	

algorithm)	may	not	be	effective	in	dealing	with	another	kind	of	unfairness	(e.g.	an	

unfair	statistical	imbalance	in	the	predictive	tendencies	of	an	algorithm).	

So	it’s	clear	that	the	Redlining	1	example	above	involves	extreme	unfairness	in	

terms	 of	 the	 historical	 conditions	 surrounding	 the	 design	 and	 application	 of	 the	

algorithm.	 But	 is	 there	 anything	 intrinsically	 unfair	 about	 the	 algorithm	 or	 its	

predictions	in	and	of	themselves?	Perhaps	the	most	obvious	thing	to	say	here	is	that	

the	algorithm	is	intrinsically	unfair	simply	in	virtue	of	its	using	zip	codes	as	a	proxy	

for	 race.	 But	 as	 I	 intimated	 above,	 I	 do	 not	 take	 this	 to	 be	 a	 promising	 response.	

Firstly,	 there	 is	 good	 reason	 to	 think	 that	 fairness	 sometimes	 requires	predictive	

algorithms	 to	 explicitly	 base	 their	 predictions	 on	 group	 membership	 traits	 like	

gender	and	race.	For	instance,	as	Corbett-Davies	and	Goel	(2018)	write,	

...[I]t	 is	 often	 necessary	 for	 equitable	 risk	 assessment	 algorithms	 to	

explicitly	 consider	 protected	 characteristics.	 In	 the	 criminal	 justice	

system,	for	example,	women	are	typically	less	likely	to	commit	a	future	

violent	 crime	 than	 men	 with	 similar	 criminal	 histories.	 As	 a	 result,	

gender-neutral	 risk	 scores	 can	 systematically	 overestimate	 a	woman’s	

recidivism	risk,	and	can	 in	 turn	encourage	unnecessarily	harsh	 judicial	

decisions.	Recognizing	this	problem,	some	jurisdictions,	 like	Wisconsin,	

have	 turned	 to	 gender-specific	 risk	 assessment	 tools	 to	 ensure	 that	

estimates	are	not	biased	against	women.(Corbett-Davis	and	Goel,	2018:	

p2).	

Secondly,	it	is	difficult	to	define	exactly	what	it	means	for	a	predictive	feature	to	

be	used	as	a	proxy	for	a	group	membership	trait.	On	what	grounds	can	one	say	that	

zip	code	counts	as	a	proxy	for	race	in	the	above	case,	while	other	variables	that	are	

also	 correlated	 with	 race	 do	 not	 count	 as	 proxies?	 This	 problem	 is	 further	

compounded	when	we	recall	that	the	predictive	algorithms	whose	fairness	we	hope	



21	

to	assess	are	often	proprietary,	meaning	that	we	don’t	actually	know	exactly	which	

predictive	 features	are	being	employed	by	the	algorithm.	Thirdly,	 I	 think	 it’s	clear	

that	 merely	 citing	 the	 use	 of	 a	 proxy	 variable	 does	 not	 helpfully	 identify	 what’s	

intrinsically	wrong	with	the	algorithm	in	the	Redlining	1	example.	In	this	respect,	I	

think	that	the	inner	workings	of	the	algorithm	are	largely	irrelevant.	If	the	algorithm	

used	 some	 other	 features	 rather	 than	 zip	 code	 to	 obtain	 the	 same	 predictions,	 it	

would	still	be	just	as	unfair.	It	seems	to	me	that	there	is	something	intrinsically	unfair	

in	the	predictions	themselves,	and	that	we	should	not	need	to	refer	to	the	predictive	

features	used	by	the	algorithm	in	order	to	diagnose	that	unfairness.	That	is	to	say,	we	

should	 be	 able	 to	 diagnose	 the	 intrinsic	 unfairness	 of	 the	 algorithm’s	 predictions	

using	statistical	 criteria	alone.	But	as	we’ve	 just	 seen,	 the	most	popular	 statistical	

criterion	 of	 algorithmic	 fairness	 from	 the	 literature,	 calibration	within	 groups,	 is	

unable	 to	 identify	any	unfairness	 in	 this	case.	We	need	a	new	criterion	 to	help	us	

clearly	diagnose	the	sense	in	which	the	predictions	of	the	algorithm	in	the	Redlining	

1	example	are	intrinsically	unfair.	

Before	introducing	this	new	criterion,	I	will	briefly	pause	to	clarify	what	I	mean	

when	I	say	that	the	algorithm	in	Redlining	1	is	`intrinsically	unfair’.	It’s	clear	that	the	

fairness	of	an	algorithm	is	a	function	of	many	factors,	including	e.g.	the	intentions	of	

its	 designers,	 the	 social	 and	 historical	 context	 of	 its	 design	 and	 application,	 the	

historical	origins	of	the	correlations	that	it	exploits	and	the	statistical	profile	of	its	

predictions.	 In	 order	 to	 get	 a	 full	 picture	 of	 the	 (un)fairness	 of	 the	 algorithm,	we	

generally	need	to	have	access	to	all	of	these	features	and	many	more.	And	since	many	

of	these	factors	concern	properties	of	the	social/historical	situation	inhabited	by	the	

algorithm,	it	seems	clear	that	the	algorithm’s	overall	(un)fairness	is	not	an	intrinsic	

property.	But	 it’s	possible	 to	acknowledge	that	 the	(un)fairness	of	an	algorithm	is	

generally	far	from	an	intrinsic	property	whilst	also	recognizing	that	there	are	some	

intrinsic	properties	of	 algorithms	such	 that	any	algorithm	 that	has	 those	 intrinsic	

property	is	bound	to	be	unfair	to	some	degree,	regardless	of	its	other	non-intrinsic	

properties.	 For	 instance,	 if	 an	 algorithm	 assigns	 radically	 different	 average	 risk	

scores	 to	 two	 groups	 with	 the	 same	 long	 run	 expected	 base	 rates,	 then	 there	 is	
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something	 intrinsically	 unfair	 about	 the	 way	 that	 the	 algorithm	 makes	 its	

judgements,	in	the	sense	that	no	algorithm	with	this	property	can	be	perfectly	fair,	

regardless	of	the	details	of	its	social/historical	context	etc.	This	does	not	entail	that	

there’s	nothing	else	to	say	about	the	nature	and	degree	of	the	algorithm’s	unfairness	

(there	always	will	be).	But	it	does	illustrate	that	there	is	a	meaningful	sense	in	which	

(the	 predictions	 of)	 algorithms	 can	 be	 intrinsically	 unfair.	 Specifically,	 when	

algorithms	make	predictions	that	systematically	favor	one	group	over	another,	we	

can	conclude	that	those	algorithms	are	unfair,	at	least	to	some	degree,	in	a	way	that	

is	 independent	of	 their	 social/historical	 context	 (in	 the	 sense	 that	 any	algorithms	

with	the	same	statistical	profiles	will	be	similarly	unfair,	regardless	of	their	internal	

workings	 and	 social	 context).	 When	 I	 argue	 that	 the	 algorithm	 in	 Redlining	 1	 is	

intrinsically	unfair,	I	mean	that	its	intrinsically	unfair	in	this	sense,	and	we	need	a	

statistical	criterion	of	algorithmic	fairness	that	properly	capture	this	fact.		

4 Base	Rate	Tracking	

To	identify	this	criterion,	let’s	look	more	closely	at	the	Redlining	1	example.	Note	first	

that	the	overall	average	risk	score	for	white	applicants	is	 ,	while	the	overall	average	

risk	score	for	black	applicants	is	 .	Next,	note	that	the	overall	default	rate	for	white	

applicants	is	 ,	while	the	overall	default	rate	for	black	applicants	is	 .	So	while	the	

difference	between	the	average	risk	scores	of	white	and	black	applicants	 is	 ,	 the	

difference	between	the	overall	default	rates	of	white	and	black	applicants	is	only	 .	

The	difference	between	the	average	risk	scores	of	the	two	groups	is	twenty	times	as	

great	as	the	difference	between	their	actual	default	rates.	This,	it	seems	to	me,	is	a	

clear	indication	of	unfairness.	If	an	algorithm	assigns	one	group	a	higher	average	risk	

score	 than	 another,	 that	 discrepancy	 has	 to	 be	 justified	 by	 a	 corresponding	

discrepancy	between	the	base	rates	of	those	two	groups,	and	the	magnitudes	of	those	

discrepancies	should	be	equivalent.	In	slogan	form:	an	algorithm	should	only	treat	

one	groups	as	much	more	risky	than	another	if	it	really	is	much	more	risky.	We	can	

formalise	this	idea	with	the	following	criterion,	
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Base	Rate	Tracking:	The	difference	between	the	average	risk	scores	assigned	to	

the	relevant	groups	should	be	equal	to	the	difference	between	the	(expected)	base	

rates	of	those	groups.7	

I	 argue	 that,	 unlike	 calibration	within	 groups,	 base	 rate	 tracking	 really	 is	 as	 a	

statistical	 criterion	of	 algorithmic	 fairness,	 i.e.	 a	 necessary	 condition	 that	 any	 fair	

algorithm	must	 satisfy.	 As	 I’ve	 just	 shown,	 base	 rate	 tracking	 (unlike	 calibration	

within	 groups)	 allows	 us	 to	 accurately	 diagnose	 the	 intrinsic	 unfairness	 of	 the	

predictions	given	by	the	algorithm	in	Redlining	1.	Since	the	difference	between	the	

average	risk	scores	assigned	to	white	and	black	applicants	is	twenty	times	greater	

than	 the	 corresponding	 difference	 between	 their	 base	 rates,	 we	 can	 say	 that	 the	

algorithm	treats	black	applicants	unfairly	in	comparison	to	white	applicants.	If	we	

were	to	rely	only	on	calibration	within	groups,	then	we	would	need	to	refer	to	the	

designers’	intentions,	or	the	unjust	historical	origins	of	the	relevant	correlations,	or	

the	 internal	workings	of	 the	algorithm,	 in	order	to	diagnose	the	unfairness	 in	 this	

case.	But	base	rate	tracking	allows	us	to	directly	identify	the	algorithm	as	intrinsically	

unfair	 on	 the	 basis	 of	 its	 predictions	 alone.	 Given	 the	 lack	 of	 information	 that	 is	

generally	 available	 regarding	 the	 design	 process	 and	 internal	 architecture	 of	

predictive	algorithms,	this	is	important,	since	it	shows	that	base	rate	tracking	allows	

us	to	 identify	algorithmic	unfairness	in	many	cases	where	we	would	otherwise	be	

unable	 to	 do	 so.	 Furthermore,	 base	 rate	 tracking	 is	 motivated	 by	 a	 natural	

philosophical	 intuition	regarding	 the	nature	of	 fairness:	 that	any	difference	 in	 the	

way	 that	an	algorithm	treats	 two	groups	needs	 to	be	 justified	by	a	corresponding	

difference	 in	 the	 relevant	behaviours/properties	of	 the	 two	groups.	 It	 is	unfair	 to	

treat	white	loan	applicants	as	if	they	have	a	much	lower	average	risk	of	defaulting	

compared	to	black	applicants	if	they	do	not	actually	have	a	much	lower	default	rate.	

It	 is	 also	 easy	 to	 see	 that	 base	 rate	 tracking,	 unlike	 the	 10	 influential	 criteria	we	

	
7	 It	 is	 worth	 noting	 here	 that	 base	 rate	 tracking	 is	 logically	 entailed	 by	 the	 strong	

formulation	 of	 calibration	 within	 groups,	 but	 is	 logically	 independent	 of	 the	 weak	
formulation.	 So	 there	 is	 a	 sense	 in	which	one	 can	 think	of	base	 rate	 tracking	as	 trying	 to	
capture	the	aspect	of	strong	calibration	that	goes	beyond	weak	calibration	but	is	still	relevant	
to	evaluations	of	fairness.		
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discussed	 in	Section	2,	 is	not	undermined	by	Hedden’s	 counterexample.	Since	 the	

base	rates	for	the	two	rooms	in	Hedden’s	coin	flip	example	are	equal	to	the	average	

risk	 scores	 assigned	 to	 the	 people	 in	 those	 rooms,	 base	 rate	 tracking	 is	 trivially	

satisfied	by	 the	optimal	predictive	algorithm.	Finally,	note	 that	base	rate	 tracking,	

unlike	calibration	within	groups,	is	not	undermined	by	the	insurance	pricing	example	

from	Section	3.1,	since	that	algorithm	satisfies	base	rate	tracking	with	respect	to	age	

groups.	 Whereas	 calibration	 within	 groups	 mistakenly	 identifies	 age	 bias	 where	

there	is	none,	base	rate	tracking	does	not	identify	any	unfairness	in	the	way	that	the	

algorithm	treats	the	two	age	groups,	which	seems	intuitively	correct.	Overall,	base	

rate	tracking	(i)	is	motivated	by	a	simple	and	powerful	philosophical	intuition	about	

the	nature	of	fairness,	(ii)	is	not	undermined	by	Hedden’s	coin	flipping	example	or	

the	insurance	pricing	example,	and	(iii)	significantly	expands	the	diagnostic	scope	of	

calibration	within	groups	in	some	important	cases.	

At	this	stage,	a	few	clarifications	are	in	order.	Firstly,	it	should	be	noted	that	one	

might	plausibly	reformulate	base	rate	tracking	in	terms	of	the	ratios	of	averages	risk	

scores	and	base	rates,	rather	than	differences.	The	resultant	formulation	is	clearly	

and	importantly	distinct	from	the	formulation	I	gave	above,	although	it	has	the	same	

motivation	and	is	equally	able	to	diagnose	the	intrinsic	unfairness	of	the	predictions	

in	Redlining	1.	For	now,	I	am	happy	to	defer	the	thorough	comparative	evaluation	of	

these	two	formulations	to	later	work,	since	the	philosophically	crucial	insight	is	that	

the	disparity	in	average	scores	should	mirror	the	disparity	in	base	rates,	and	both	

formulations	 try	 to	 capture	 that	 insight,	 although	 they	 do	 so	 using	 different	

mathematical	functions.	

Secondly,	note	that	one	could	naturally	try	to	construct	an	analogue	of	base	rate	

tracking	 for	binary	classification	algorithms.	Specifically,	 the	 following	principle	 is	

also	motivated	by	the	idea	that	any	difference	in	the	way	that	an	algorithm	treats	two	

groups	 should	 be	 justified	 by	 a	 corresponding	 difference	 in	 their	 actual	

behaviours/properties.	
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Binary	Base	Rate	Tracking:	The	difference	between	the	percentage	of	members	

of	each	relevant	group	that	are	classed	as	‘positive’	should	be	equal	to	the	(expected)	

difference	between	the	base	rates	of	those	groups.	

To	 illustrate:	 binary	 base	 rate	 tracking	 says	 that	 it	 is	 unfair	 for	 a	 binary	

classification	algorithm	to	class	50%	of	loan	applicants	from	Group	1	as	‘high	risk’	

while	classing	only	30%	of	applicants	from	Group	2	as	‘high	risk’	if	it’s	not	the	case	

that	 the	 (expected)	 percentage	 of	 Group	 1	 applicants	who	 actually	 default	 is	 not	

exactly	20%	greater	than	the	percentage	of	Group	2	applicants	who	actually	default.	

While	 binary	 base	 rate	 tracking	 seems	 to	 be	 motivated	 by	 the	 same	 compelling	

motivation	as	standard	base	rate	tracking,	it’s	easy	to	see	that	it’s	actually	prone	to	

powerful	counterexamples	to	which	the	original	formulation	is	immune.	To	see	this,	

imagine	 that	 twenty	people	are	 split	 evenly	between	 two	 rooms,	A	and	B.	The	A-

people	are	all	assigned	coins	with	bias	0.6	and	the	B-people	are	assigned	coins	with	

bias	0.4.	A	binary	classification	algorithm	predicts	whether	people’s	coins	will	land	

heads	when	tossed	on	the	basis	of	their	coin’s	bias.	If	the	bias	is	0.6,	it	predicts	that	

the	coin	will	land	heads,	and	if	the	bias	is	0.4,	it	predicts	that	it	will	land	tails.	Then	

the	algorithm	will	predict	that	all	A-people	will	toss	heads,	and	that	no	B-people	will	

toss	heads,	which	seems	perfectly	fair.	But	the	difference	in	the	base	rates	of	the	two	

groups	is	only	20%,	which	is	five	times	less	than	the	100%	difference	between	the	

percentages	of	each	population	 that	are	predicted	 to	 toss	heads	by	 the	algorithm.	

This	example	illustrates	that	there	is	no	obvious	and	plausible	analogue	of	base	rate	

tracking	for	binary	classification	algorithms.	As	it	stands,	base	rate	tracking	can	only	

be	 legitimately	 applied	 as	 a	 necessary	 condition	 for	 the	 fairness	 of	 risk	 scoring	

algorithms.8	

Thirdly,	note	that	base	rate	tracking	is	intended	to	act	as	a	necessary	condition	

for	an	algorithm	to	count	as	perfectly	fair.	In	practice,	few	real	algorithms	will	fully	

	
8	One	could	propose	a	weaker	version	of	binary	base	rate	tracking	that	requires	only	that	

the	 sign	 of	 the	 difference	 in	 the	 base	 rates	 be	 the	 same	 as	 the	 sign	 of	 the	 corresponding	
difference	 between	 the	 percentages	 of	 the	 groups	 that	 are	 classed	 as	 positive.	 This	
formulation	avoids	straightforward	counterexamples,	but	it	also	robs	the	criterion	of	its	bite	
and	will	be	too	weak	to	diagnose	many	paradigmatic	instances	of	algorithmic	unfairness.		
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satisfy	this	criterion.9However,	we	can	still	use	the	criterion	to	assess	the	scale	and	

significance	 of	 an	 algorithm’s	 unfairness	 by	 evaluating	 how	 far	 away	 it	 is	 from	

satisfying	base	rate	tracking.	If	the	difference	between	the	average	risk	scores	is	far	

greater	than	the	difference	between	the	base	rates,	then	the	algorithm	is	very	unfair,	

but	if	the	divergence	between	those	quantities	is	small,	then	the	unfairness	may	be	

slight.	As	with	any	evaluative	standard,	perfection	is	a	rare	exception	at	best,	and	the	

fact	 that	 the	 standard	 is	 rarely	 fully	 satisfied	 does	 not	 undermine	 its	 claim	 to	

normative	significance.	Of	course,	one	might	think	that	the	notion	of	̀ perfect	fairness’	

is	a	red	herring	here,	and	claim	that	all	we	ever	have	are	pragmatically	determined	

standards	of	what	counts	as	`fair	enough’.	When	we’re	dealing	with	judgements	that	

have	life	or	death	outcomes,	the	standard	is	much	higher	than	when	we’re	dealing	

with	judgements	that,	at	worst,	 lead	to	minor	inconveniences	for	those	affected.	If	

one	prefers	to	eschew	the	general	ideal	of	perfect	fairness	and	focus	rather	on	context	

dependent	notions	 of	 sufficient	 fairness,	 then	one	 can	 interpret	my	 arguments	 as	

supporting	 the	 idea	 that	 in	 order	 for	 an	 algorithm	 to	 be	 `fair	 enough’	 in	 a	 given	

context,	the	divergence	between	the	base	rates	and	the	average	risk	scores	should	

not	be	`too	great’,	where	what	counts	as	`too	great’	(like	what	counts	as	`sufficiently	

fair’)	is	determined	by	a	range	of	pragmatic	contextual	variables.	However,	I	prefer	

to	think	of	statistical	criteria	of	algorithmic	fairness	as	imposing	necessary	conditions	

for	 an	 algorithm	 to	 count	 as	 perfectly	 fair,	 where	 the	 extent	 of	 an	 algorithm’s	

unfairness	tracks	the	extent	of	its	violation	of	those	criteria,	and	I	will	stick	to	this	

conception	in	what	follows.		

Fourth,	note	that	as	well	as	requiring	that	the	average	risk	scores	be	equal	when	

the	base	rates	are,	base	rate	tracking	also	requires	the	converse,	i.e.	that	when	the	

risk	scores	are	equal,	the	base	rates	should	be	too.	So	as	well	as	stipulating	that	a	fair	

algorithm	only	treats	groups	differently	when	there	is	a	suitable	difference	in	their	

base	 rates,	 base	 rate	 tracking	 also	 requires	 that	 groups	 should	 only	 be	 treated	

similarly	to	the	extent	that	their	base	rates	are	similar.	Again,	this	is	motivated	by	a	

natural	intuition:	that	it	would	be	unfair	to	treat	two	groups	as	equally	risky	if	one	

	
9	The	same	can	be	said	of	all	the	statistical	criteria	discussed	in	Section	2	
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was	in	fact	more	risky	than	another.	Recalling	the	correlation	between	gender	and	

recidivism,	an	algorithm	would	seem	to	be	unfair	 if	 it	assigned	males	and	females	

similar	 risk	 scores	 even	 though	 females	 had	 a	 significantly	 lower	 actual	 rate	 of	

recidivism.	But	 this	observation	gives	rise	 to	a	possible	objection	 to	 the	base	rate	

tracking	 criterion.	 Going	 back	 to	 Redlining	 1,	 base	 rate	 tracking	 successfully	

identifies	 the	 fact	 that	 the	 algorithm	 is	 unfair	 to	 black	 applicants,	 because	 the	

difference	 between	 the	 average	 risk	 scores	 of	 white	 and	 black	 applicants	 is	 far	

greater	than	the	difference	between	their	base	rates.	However,	base	rate	tracking	still	

requires	 that	white	applicants	should	be	assigned	a	 lower	average	risk	score	 than	

black	applicants,	since	black	applicants	have	a	higher	overall	default	rate.	And	one	

might	plausibly	object	that	this	is	obviously	unfair,	since	black	applicants	have	the	

same	default	rate	as	white	applicants	within	any	given	zip	code.	This	in	turn	implies	

that	base	rate	tracking	is	not	a	plausible	statistical	criterion	of	algorithmic	fairness.	

In	order	to	respond	to	this	concern,	let’s	alter	the	Redlining	1	algorithm	so	that	it	

accords	with	base	rate	tracking,	as	below.	

	
Redlining	2	

	

Race	 Zip	 Credit	 Number	 Default	Rate	 Risk	Score	

White	 TR10	 Good	 90	 	 	

White	 TR10	 Bad	 30	 	 	

White	 TR11	 Good	 40	
	 	

White	 TR11	 Bad	 40	 	 	

Black	 TR10	 Good	 60	 	 	

Black	 TR10	 Bad	 20	
	 	

Black	 TR11	 Good	 60	 	 	

Black	 TR11	 Bad	 60	 	 	
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In	this	case,	the	algorithm	still	assigns	risk	scores	based	purely	on	zip	code,	but	

instead	of	uniformly	assigning	risk	scores	of	 	and	 	to	all	applicants	from	TR10	and	

TR11,	 respectively,	 it	 rather	 assigns	 scores	 of	 	 and	 ,	 which	 ensures	 that	 the	

difference	between	the	average	risk	scores	assigned	to	white	and	black	applicants	is	

equal	to	the	difference	in	the	default	rates	for	white	and	black	applicants,	as	required	

by	base	rate	tracking.	But	again,	one	might	think	that	this	algorithm	is	still	unjust,	

since	 it	 assigns	 white	 applicants	 a	 lower	 average	 risk	 score	 (0.235)	 than	 black	

applicants	 (who	receive	an	average	risk	score	of	0.24),	and	does	so	purely	on	 the	

basis	of	their	zip	code.	

In	response	to	this	criticism,	it	is	important	to	recognise	first	that,	like	Redlining	

1,	Redlining	2	suggests	some	obvious	sources	of	unfairness	concerning	the	historical	

origins	of	the	algorithm	and	the	correlations	it	exploits	to	make	its	predictions.	If	the	

algorithm	was	designed	to	disadvantage	black	applicants,	or	if	the	correlations	upon	

which	it	relies	are	the	product	of	unjust	historical	conditions,	then	those	constitute	

independent	sources	of	unfairness	which	need	to	be	appropriately	recognised	and	

taken	into	account	in	the	application	of	the	algorithm.	Of	course,	statistical	criteria	

like	base	rate	tracking	are	unable	to	directly	diagnose	these	kinds	of	unfairness,	since	

they	 concern	 the	historical	 origins	of	 the	algorithm	and	 the	 relevant	 correlations,	

rather	 than	 predictive	 properties	 of	 the	 algorithm	 itself.	 However,	 as	 I	 stressed	

above,	I	think	that	one	can	recognise	these	sources	of	injustice	without	thinking	that	

the	 algorithm	 and	 its	 predictions	 are	 themselves	 intrinsically	 unfair.	 In	 contrast,	

when	the	algorithm	in	Redlining	1	assigned	black	applicants	a	risk	score	that	was	

higher	 than	 their	white	 counterparts	 in	 a	manner	 that	 could	not	be	 justified	by	a	

comparable	disparity	 in	 their	base	rates,	 that	was	a	case	 in	which	 the	algorithm’s	

predictions	were	themselves	intrinsically	unfair,	and	could	be	identified	as	such	on	

the	basis	 of	 purely	 statistical	 criteria.	 To	 illustrate	 the	point	 further,	 consider	 the	

following	example.	We	want	 to	predict	how	likely	premier	 league	 forwards	are	to	

score	at	least	10	goals	over	the	course	of	a	season.	Towards	this	end,	our	algorithm	

simply	looks	at	whether	or	not	the	player	takes	more	than	5	shots	a	game	on	average	

and	assigns	a	risk	score	of	 	to	those	players	that	don’t	and	a	risk	score	of	 	to	those	
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that	do,	i.e.	 it	views	players	that	take	more	than	5	shots	a	game	as	having	 	more	

chance	of	scoring	10	goals	in	the	season	than	those	that	don’t.	

Goal	Predictor	

Height	 >	5	Shots	Per	Game	 >	50%	Accuracy	 Number	 Base	Rate	 Risk	Score	

Tall	 No	 No	 90	 1	
10	

9	
40	

Tall	 No	 Yes	 30	 1	
5	

9	
40	

Tall	 Yes	 No	 40	 1	
10	

1	
4	

Tall	 Yes	 Yes	 40	 1	
5	

1	
4	

Short	 No	 No	 60	 1	
10	

9	
40	

Short	 No	 Yes	 20	 1	
5	

9	
40	

Short	 Yes	 No	 60	 1	
10	

1	
4	

Short	 Yes	 Yes	 60	 1	
5	

1	
4	

	

As	 it	 turns	out,	 short	players	 tend	 to	 take	more	 shots	 than	 tall	 players,	which	

means	that	short	players	are	assigned	a	higher	average	risk	score	than	tall	players.	

It’s	also	the	case	that	whether	a	player	in	fact	scores	more	than	10	goals	in	a	season	

is	 perfectly	 predicted	 by	 whether	 their	 shooting	 accuracy	 is	 greater	 than	 50%.	

Regardless	of	the	player’s	height	and	whether	they	shoot	more	than	5	times	a	game,	

20%	of	players	with	a	shot	accuracy	greater	than	50%	do	score	at	least	10	over	the	

season,	while	 only	 10%	of	 those	players	with	 less	 than	50%	accuracy	do	 so.	 The	

proportion	of	tall	players	who	are	accurate	 is	 the	same	as	the	proportion	of	short	

players	who	are	accurate	amongst	both	the	subset	that	take	a	lot	of	shots,	and	the	

subset	that	don’t,	although	short	players	are	slightly	more	accurate	overall.	Similarly,	

the	proportion	of	tall	players	that	take	a	lot	of	shots	who	actually	score	at	least	10	is	

the	same	as	the	proportion	of	small	players	that	take	a	lot	of	shots	who	score	at	least	

10,	and	the	proportion	of	tall	players	that	don’t	take	a	lot	of	shots	who	actually	score	



30	

at	least	10	is	the	same	as	the	proportion	of	small	players	that	don’t	take	a	lot	of	shots	

who	score	at	 least	10.	But	 it	doesn’t	seem	to	me	that	the	algorithm	is	treating	tall	

players	unfairly	in	comparison	to	short	players	by	assigning	them	a	lower	average	

risk	score.	Certainly,	the	algorithm	is	far	from	predictively	optimal,	and	it	would	be	

much	better	if	it	based	predictions	on	accuracy	of	shots	rather	than	volume.	Still,	it	

seems	wrong	to	say	that	the	algorithm	treats	tall	players	unfairly	in	comparison	to	

shorter	players.	There	is	a	difference	of	 	between	the	average	risk	scores	assigned	

to	tall	and	short	players,	but	that	difference	is	justified	by	a	corresponding	difference	

of	the	same	magnitude	between	their	base	rates.	But	of	course,	the	algorithm	in	this	

example	is	structurally	isomorphic	to	the	algorithm	used	in	Redlining	2,	both	in	terms	

of	the	statistical	properties	of	its	predictions,	and	in	terms	of	how	it	uses	what	looks	

like	a	statistical	proxy	for	group	membership	in	order	to	determine	risk	scores,	while	

ignoring	more	accurate	predictive	features	like	shot	accuracy.	I	think	this	shows	that	

the	unfairness	apparent	in	Redlining	2	(unlike	the	unfairness	in	Redlining	1)	is	not	

intrinsic	to	the	algorithm,	but	stems	rather	from	facts	regarding	the	unjust	historical	

conditions	that	gave	rise	to	the	correlations	exploited	by	the	algorithm,	together	with	

facts	about	the	unjust	intentions	of	the	algorithm’s	designers.		

I	take	these	observations	to	provide	an	adequate	response	to	the	earlier	objection	

that	 base	 rate	 tracking	would	 require	 unfair	 differences	 in	 average	 risk	 scores	 in	

cases	like	Redlining	2.	More	generally,	it	is	worth	reiterating	that	base	rate	tracking	

allows	us	to	directly	diagnose	unfairness	on	the	basis	of	predictions	alone	in	many	

cases	in	which	calibration	within	groups	is	blind	to	the	relevant	unfairness.	So	even	

if	 one	 hopes	 to	 resist	 my	 arguments	 for	 the	 non-necessity	 of	 calibration	 within	

groups,	 there	 is	 still	 good	 reason	 to	 consider	 base	 rate	 tracking	 as	 an	 additional	

criterion	 that	 extends	 our	 diagnostic	 tool	 kit	 for	 identifying	 algorithmic	 injustice.	

Furthermore,	base	rate	tracking	is	justified	by	the	intuitive	idea	that	groups	should	

only	be	 treated	differently	 to	 the	extent	 that	 their	behaviours/properties	 actually	

reflect	 that	 difference,	 and,	 unlike	 most	 other	 influential	 statistical	 criteria	 for	

algorithmic	fairness,	it	is	not	undermined	by	Hedden’s	counterexample.	
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5 The	Role	of	Statistical	Criteria	

I	 conclude	 with	 some	 general	 remarks	 concerning	 the	 proper	 role	 of	 statistical	

criteria	of	algorithmic	 fairness	 in	ensuring	the	equitable	and	fair	use	of	predictive	

algorithms	in	society.	The	greatest	ostensible	benefit	of	statistical	criteria	is	that	they	

provide	us	with	concrete	diagnostic	 tools	 for	 identifying	algorithmic	unfairness	 in	

cases	where	the	internal	mechanisms,	design	processes	and	historical	origins	of	the	

relevant	 algorithm	 are	 opaque	 or	 controversial.	 Unfortunately,	 Hedden’s	

counterexample	undermined	10	of	the	11	most	promising	extant	statistical	criteria,	

and	I	have	offered	a	novel	counterexample	that,	by	my	lights,	undermines	the	11th	

remaining	criterion.	However,	I	have	also	posited	another	novel	criterion,	base	rate	

tracking,	 that	 avoids	 both	 of	 these	 counterexamples	 and	 codifies	 a	 natural	 pre-

theoretic	intuition	about	the	nature	of	algorithmic	fairness.	I’ve	also	shown	that,	even	

if	one	hopes	to	hold	on	to	the	calibration	within	groups	criterion,	adding	base	rate	

tracking	 to	 our	 toolkit	 allows	 us	 to	 diagnose	 unfairness	 that	would	 otherwise	 go	

undetected	in	many	cases	(e.g.	Redlining	1).	However,	it	is	crucial	to	recognise	that	

there	are	some	instances	of	the	applications	of	predictive	algorithms	(e.g.	Redlining	

2)	that	involve	grave	injustices	that	simply	cannot	be	properly	diagnosed	by	purely	

statistical	criteria.	In	cases	like	these,	one	can	reasonably	contend	that	the	injustice	

is	not	an	intrinsic	property	of	the	algorithm	itself,	but	rather	arises	from	historical	

conditions	pertaining	to	the	development	and	application	of	the	algorithm.	This	 is	

made	most	clear	by	cases	in	which	two	algorithms	with	isomorphic	predictions	and	

internal	 structures	 differ	 in	 terms	 of	 their	 fairness	 (e.g.	 Redlining	 2	 and	 Goal	

Predictor).	

So	while	statistical	criteria	like	base	rate	tracking	can	play	an	important	role	in	

the	 fight	 against	 algorithmic	 unfairness,	 the	 hardest	 problem	 will	 be	 to	 develop	

mechanisms	that	properly	identify	and	compensate	for	the	way	in	which	algorithms	

exploit	 correlations	which	 themselves	arise	 from	unfair	historical	 conditions.	 It	 is	

important	that	we	recognise	this	problem	as	distinct	from	the	problem	of	diagnosing	

unfairness	that	is	intrinsic	to	the	way	that	a	given	algorithm	makes	predictions,	since	
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the	 tools	 we	 use	 to	 address	 the	 latter	 problem	 (statistical	 criteria	 of	 algorithmic	

fairness)	are	not	well	suited	to	addressing	the	former.	
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